从硅往碳化硅器件过渡中 变流器设计的十个常见问题

马国伟_{博士}、郝欣_{博士} 英飞凌科技 2019 年11月1日 深圳

演示格式 & 专业名词说明

IGBT: V_{GE} - 门极-发射极电压; I_C - 集电极电流; R_G - 栅极电阻 SiC MOSFET: V_{GS} - 柵-源电压; I_D - 漏电流

首字母缩略: ROT - 第一规则 BOE - 粗略计算

幻灯片序号 & 将幻灯片合二为一

SiC 晶体结构

SIC MOSFET与 Si IGBT

> 无导通阈值电压

SIC MOSFET与 SI IGBT

参数	IKY40N120CH3	IMZ120R045M1	
工艺	场终止沟槽栅 Si IGBT	沟槽栅 SiC MOSFET	
最大脉冲电流I _C I _D	160 A	130 A	
典型 V _{GE}	+15/-5 V	+15/-3 V	
短路时间	10 µS	<mark>3 μS</mark>	
V _{CE} /V _{DS} @ 50 A 25 °C/175 °C	2.2 V/2.6 V	2.25 V/3.75 V	
C_{GE}/C_{GS}	2.3 nF	<mark>2.0 nF</mark>	
C_{CE}/C_{DS}	110 pF	100 pF	
C_{CG}/C_{DG}	130 pF	13 pF	_
门极阈值电压@25 °C	5.8 V	4.5 V	四
栅极充电电荷 0-15 V	190 nC	52 nC	
导通上升时间@25 ℃	59 ns	22 ns	
关断下降时间@25 ℃	306 ns	27 ns	
热阻Rjc	0.3 °C/W	0.66 °C/W	

0.引言

参数	IKY40N120CH3	IMZ120R045M1
工艺	场终止沟槽栅 Si IGBT	沟槽栅 SiC MOSFET
最大脉冲电流I _C I _D	160 A	130 A
典型 V _{GE}	+15/-5 V	+15/-3 V
短路时间	10 µS	3 µS
V _{CE} /V _{DS} @ 50 A 25 °C/175 °C	2.2 V/2.6 V	2.25 V/ 3.75 V
C _{GE} /C _{GS}	2.3 nF	2.0 nF
C _{CG} /C _{DG}	130 pF	13 pF
栅极充电电荷0-15 V	190 nC	52 nC
	306 ns	27 ns
热阻Rjc	0.3 °C/W	0.66 °C/W

四引脚分立封装

0.引言

0.引言

参数	IKY40N120CH3	IMZ120R045M1
工艺	场终止沟槽栅 Si IGBT	沟槽栅 SiC MOSFET
最大脉冲电流I _c I _D	160 A	130 A
	10 µS	3 µS
C _{GE} /C _{GS}	2.3 nF	2.0 nF
C _{CG} /C _{DG}	130 pF	13 pF
门极阈值电压@25 °C	5.8 V	4.5 V
栅极充电电荷0-15 V	190 nC	52 nC
	306 ns	27 ns
热阻Rjc	0.3 °C/W	0.66 °C/W

Copyright © Infineon Technologies AG 2019. All rights reserved

10

参数	IKY40N120CH3	IMZ120R045M1	
工艺	场终止沟槽栅 Si IGBT	沟槽栅 SiC MOSFET	
最大脉冲电流I _c I _D	160 A	130 A	
	10 µS	3 µS	
C _{GE} /C _{GS}	2.3 nF	2.0 nF	
C _{CG} /C _{DG}	130 pF	13 pF	
			ற
栅极充电电荷0-15 V	190 nC	52 nC	
导通上升时间@25 ℃	59 ns	22 ns	
关断下降时间@25 ℃	306 ns	27 ns	
热阻Rjc	0.3 °C/W	0.66 °C/W	
0.引言 Copyrigh	nt © Infineon Technologies AG 2019. All rig	ghts reserved	

|脚分立封装|

IGBT开关过程 @ 15 A, 25 °C, 600 VDC

SiC MOSFET开关过程 @ 15 A, 25 °C, 600 VDC

0.引言

Copyright © Infineon Technologies AG 2019. All rights reserved

Cool SiC

综述 - 关键区别

infineon

17

我们首先谈一个不能避讳的敏感话题-成本

为什么SiC成本更高?

- 晶体生长

硅 Si	碳化硅 SiC
快速拉伸法@ 1500 °C	慢速生长(<1 mm/h) @ 2100-2500 °C
晶体尺寸长 (I/Ø >>1)	晶体尺寸短 (5 cm, l/ Ø <<1)
晶体直径不受晶种尺寸限制	晶种 ∅ ≈ 晶体 ∅
易于切割成晶圆	硬度较高,加工、抛光难度大

为什么SiC成本更高? - 12英寸与6英寸晶圆,以及更高的缺陷密度

المراجعة والمراجع المراجع المراجع

SiC基晶圆缺陷密度大

SiC 器件比等效的Si器件更昂贵。 如果基于SiC的模块比等效的Si器件成本高Y美元,最终的变频器设计 "可能"需要额外的\$Yx3

21

infineon

利用SiC MOSFET可以做出的系统优化

SiC的市场预测

Q2. 应用

SiC可能的应用领域

光伏领域应用:为什么SiC适合这一领域? 举例 – 光伏组串逆变器 BOM 成本

Q2a. 应用

Copyright $\ensuremath{\mathbb{C}}$ Infineon Technologies AG 2019. All rights reserved

开关频率对30A(RMS)升压电感的影响

48 kHz(相对于16 kHz 方案)

- > 成本降低55%
- > 重量降低60%
- > 体积降低65%
- > 损耗降低19%

太阳能电池组件-雷达图

250kVA UPS分析 - 预估总拥有成本 (TCO)

与完整的安装系统,运行效率和整体冷却系统相关的成本相比,功率半导体成本较低。

IGBT大约有60%用于电机驱动应用

宽禁带器件好像跟电机驱动不太咬弦?

电机驱动: SiC前景仍有待进一步探索

(infineon

高电压变化速率存在的问题

电缆传输线

高电压变化速率存在的问题

Q2c.应用

Q2c. 应用

SiC MOSFET典型的电压变化速率和开关损耗 vs. R_G

Cool SiC^{**}
用于22kW 480VAC驱动电机的SiC与Si

驱动电机参数: dv/dt (0.1 V_{DC}-0.9 V_{DC}) ≈ 5 kV/µs

Q2c. 应用

Drives

依据泵和转速曲线在EN 50598-2 下测量的节能数据

散热器尺寸及性能

低损耗意味着更低的重量,更小的尺寸以及 更少的散热问题

尺寸及重量减少60%

对于某些应用,重量和尺寸是关键设计参数。

总结: SiC 和电机驱动

SiC MOSFET 功率组件在电动汽车领域的节能潜力: infineon 5-10% Automotive \bigcirc 600 -Si IGBT, Vge=15V 500 -SiC Mosfet, Vgs=15V 400 **CURRENT** (A) 300 100 90 80 US Cycles – FTP 75 200 70 Speed (km/h) 60 50 40 100 30 20 10 0 Ω 0 500 1000 1500 2000 0.00 3.00 1.00 2.00 VOLTAGE DROP (V) 4.00 Time (s) US FTP &% cycle 节能: 7.6% Artemis URM150 节能: 10.5% Cool SiC"

Q2d. 应用

Q2d. 应用

优缺点比较

利弊权衡设计

两全其美 不是"或"而是"和"

第一部分

火车跑得快,全靠车头带 A car is only as good as it's driver

SiC MOSFET与IGBT -门极驱动的区别

关键参数: 40A/45mΩ 1200V 器件

Q3. 栅极驱动

53

参数	IKY40N120CH3	IMZ120R045M1
工艺	场终止沟槽栅 Si IGBT	沟槽栅 SiC MOSFET
最大脉冲电流I _c I _D	160 A	160 A
	10 µS	3 µS
	2.2 V/2.6 V	2.25 V/3.75 V
C _{GE} /C _{GS}	2.3 nF	2.0 nF
C_{CG}/C_{DG}	130 pF	13 pF
栅极阈值电压@25 ℃	5.8 V	4.5 V
栅极充电电荷 0-15 V	190 nC (0 to 15 V)	62 nC (-5V to 15 V)
导通上升时间@25 ℃	59 ns	22 ns
关断下降时间@25 ℃	306 ns	27 ns
热阻Rjc	0.3 °C/W	0.66 °C/W

低电容使开关频率变得更快

IGBT/SiC MOSFET-关断特性 (15 A, 25 °C, 600 VDC)

IGBT/SiC MOSFET-开通特性 (15 A, 25 °C, 600 VDC)

Q3. 栅极驱动

典型的隔离栅极驱动电路

栅极驱动IC

电压变化速率dV/dt与开关电流的典型关系 -器件额定电流为200A

开关电流 IC / ID (A)

Typical values for Infineon 1200V CoolSiC[™] MOSFET and IGBT 4 @ 200A Rating

供电变压器中的寄生电容耦合电流

带磁心的隔离变压器 - 低电容耦合分离绕组

电隔离的技术

Analog Devices, Infineon, Power Integrations, Rohm及其他公司

Avago, Fairchild, Toshiba 及其他公司

跨隔离势垒的寄生电容 -驱动IC的CMTI

高电压变化速率的影响

- 容性耦合导致误导通

下管SiC MOSFET导通时对上管栅极电压的影响

数据手册上典型的栅极阈值电压 V_{GSTH}

柵极阈值电压随温度的变化

Cool SiC™

65

使用具有良好电容比 C_{DG} /C_{GS}比的MOSFET

使用带米勒钳的驱动器IC,见下文

使用具备高V_{GSTH}的MOSFET

增加负的V_{GS}

Q3a. 栅极驱动

ROT (第一原则) C_{DG}与C_{GS}比值 > 150

V_{GS} 余量粗略估计: 粗略计算 ΔV_{GS} ≈ ΔV_{DG} x C_{GS} /C_{DG} ΔV_{GS} ≈ 600 V x 13 pF/2000 pF ΔV_{DG} ≈ 3.9 V 加上V_{GSTH} ≈ +4.0 V 和 -3 V 的栅极电压

应该有+3.1 V的余量.

一切以实际测量为准。

67

负V_{GS}值的权衡

利用单管拓朴结构改善寄生导通效应

在这些拓扑结构中, 关断状态时不会出现 过高的dv/dt

Q3a. 栅极驱动

SiC MOSFETs 与 IGBT栅极驱动的区别

71

Q3b. 栅极驱动

V_{GS} 电压值的权衡

数据手册上栅极电压-V_{GS} / V_{GE} 额定值及最大值

Q3b. 栅极驱动

Copyright © Infineon Technologies AG 2019. All rights reserved

73
SiC MOSFETs 与 IGBT栅极驱动的区别

二极管电路退饱和检测

典型100A 1200V SiC MOSFET的触发电平

Q3c. 栅极驱动

500ns 导通时间下, 100A-1200V SiC MOSFET 消隐时间问题

权衡 - 最佳余量为多少?

高余量

冗余度: 驱动IC时序, 电流源, C_{blank}, R_{DSON}, Vref 等 时间有可能超过器件极限3 µs

低裕量 退饱和信号噪声会引起误触发

Q3c. 栅极驱动

退饱和引脚电压 (V)

总结: SiC MOSFET与 IGBT-栅极驱动的区别

Cool SiC [™]	IGBT (IKY40N120CH3)	SiC MOSFET (IMZ120R045M1)
驱动 IC CMTI 值	>15 kV/µs	>50 kV/µs
驱动信号时序变化范围	<200 ns	<50 ns
耦合电容	<15 pF	<5 pF
功率需求(20kHz工作条件)	>100 mW	>30 mW
栅极阈值电压(25°C)	5.1 V to 6.5 V	3.5 V to 5.5 V
典型的负压范围	0 V to -15 V	-5 V to -3 V
短路时间	10 µs	3 µs

驱动 SiC MOSFETs - 总结

infineon

SiC MOSFETs 与 IGBT 门极驱动的区别

SIC MOSFET

SiC MOSFET 体二极管 - 与外部SiC二极管动态开关性能对比

由于漂移区非常薄,SiC MOSFET体二极管的 开关损耗相比于Si二极管是可忽略的

Coo SiC

-些芯片供应商需要额外并联SiC二极管以实现动态性能

为什么采取同步整流?

Q4. 同步整流与栅极驱动

同步整流的挑战

Q4. 同步整流与栅极驱动

- 准确的死区时间计算
- 精确的驱动器延迟时序和匹配

体二极管和同步整流模式 - 第3象限工作原理

互锁 延迟/死区时间

△t 关断上管和开通下管之间的时间, 或是关断下管和开通上管之间的时间 目的是避免短时的直通现象

数据手册典型值

Q4. 同步整流与栅极驱动

Parameter	Symbol	Values			Unit
		Min.	Тур.	Max.	
Input IN to output propa- gation delay ON	T _{PDON}	95	120	142	ns
Input IN to output propa- gation delay OFF	T_{PDOFF}	105	125	150	ns
Input IN to output propa- gation delay distortion $(T_{PDOFF} - T_{PDON})$	T _{PDISTO}	-15	5	25	ns

栅极驱动器中的精确时序非常重要,因为死区时间会 影响性能

Q4. 同步整流与栅极驱动

设计用于匹配SiC要求的驱动器IC示例

- > 高dv / dt额定值 CMTI 100 kV /µs
- > 短输入滤波时间,最高可达4 MHz切换
- > 非常紧密的传播延迟,在整个温度范围内匹配+/-15 ns
- > 独立的漏和源或Miller钳位选项
- > 驱动能力>6A以消除升压级。

具有高达6A栅极电流要求的器件的典型驱动器原理图

同步整流总结

Q4. 同步整流与栅极驱动

infineon

Q5. 电感

Copyright © Infineon Technologies AG 2019. All rights reserved

100

为什么要降低系统电感 L_s ?

杂散电感与电容之间的电流震荡

Cool SiC

102

100 A 1200 V SiC 沟槽式 MOSFET 的关断

在100 A · 600 VDC关断 · ≈ 45 nH 系统电感

200A SiC MOSFET 的典型 di/dt 水平 - 150 °C条件下开关

Cool SiC

103

在250A关断, L_s ≈ 30 nH, 10.2 kA/us下产生 ≈ 306V 电压过冲

200A SiC MOSFET 的典型di/dt随R_G的变化 - 150 °C及250A 条件下开关

随着R_G 从 3.9 Ω 到 20 Ω 逐渐增加,电压过冲从≈ 306V 到 30 nH x 4 kA/uS ≈ 120 V 逐渐减小

104

如何降低电感?

Page 106Q5. 电感

使用基于 PCB 的模块封装

低电感模块设计

Q5. 电感

低电感模块设计

低电感和对称模块设计

内部芯片布局

带供电电容的PCB布局示例

具有多个连接点 和短回路的平行 重叠平面

Q5. 电感

版权©因飞凌科技股份公司2019年。保留所有权利

两个 PCB 直流母线层中的电流

- > 短电流路径、短回路、多条路径并联
- > 如果可能,电流在平行平面中反向流动

SiC 的封装还需要满足什么要求?

静态和动态电流共用 电源和栅极连接

非对称输入布局

输出均流

Q5. 电感

压接引脚技术可用于大电流PCB的设计

降低杂散电感小结

Copyright © Infineon Technologies AG 2019. All rights reserved

第二部分

第二部分

权衡 – R_{DSON}与短路能力

提高短路能力

造成差别的原因-典型输出特性

IGBT

典型的 IGBT and SiC MOSFET 退饱和特性

- 门极电压设定为+15V

短路情况可以通过在IGBT/MOSFET导通时测量V_{CE} or V_{DS} 的值来检测。 IGBT 会在更低的 I_{nom} 水平下退饱和。

三条主要的短路路径

- 三条主要的短路路径:
- 1. 相对地
- 2. 两相之间
- 3. 桥臂直通

- 电流传感器的三个主要位置:
- A. 相输出
- B. 直流母线
- C. 桥臂

SiC MOSFET 短路测试 -^{短路类型 I}

131

Cool "SiC

SiC MOSFET 短路测试 -^{短路类型 I}

工况: V_{GS} =-9 V / +15 V. V_{DC}=800 V, Isc=240 A@ 25 °C

132

Cool SiC™

SiC MOSFET 短路测试 -^{短路类型 II}

工况: V_{GS} =-9 V / +15 V. VDC=800 V, Isc=300 A@ 25 °C

Cool SiC

SiC MOSFET 及 IGBT 短路时长 vs. 栅极电压的曲线图

注: 短路时间依赖于许多因素: 如直流母线电压, 封装, 门极驱动设计, 母线电感, 结温等等

134

SiC MOSFET 耐短路时间与母线电压及V_{GS}的关系

注: 耐短路时间取决于许多因素: 如直流母线电压, 封装, 门极驱动设计, 母线电感, 结温等

SiC MOSFETs 体二极管 浪涌电流 (非重复)

在10ms的正弦波浪涌中, I_{max}於 V_{GS} 为-5 V 及15 V时均接近

136

体二极管的正向压降与浪涌电流I_D规格的关系

- 使用或不使用MOSFET栅控

在低电流时,使用栅控(通道)比只使用体二极管的压降低得多。

但在大电流时,体二极管压降增幅下降 (MPS效应),因此使用栅控与否对抗浪涌电 流能力影响不大。

压降与浪涌电流关系如下图所示。

注意: 浪涌电流及 V_F 取决於电压, T_i 等。

第二部分

典型IGBT的有源钳位过电压保护电路

有源钳位电路在关断时V_{CE}电压超过预先设定值时,通过拉升栅极电压 来减小IGBT关断过程中的di/dt

无钳位电感关断**(UIS)**测试 - 25 ℃ 及 175 ℃ , ≈60 V, ≈20 A

由於材料的特性,当达到SiC材料的临界崩溃电场时,SiC MOSFET会发生雪崩。

當漂移区中的载流子被电场加速到足够高的能量,使得在碰撞中它们可以产生额外的电子-空穴对。

如果载流子在空间电荷区中平均分布,那 么该器件可以具有雪崩能量规格。

UIS 测试至器件失效 - 25℃ 及 ≈ 50V

141

第二部分

如何对短路、过电流和过电压作保护?

如何计算损耗和结温?

热设计

SiC MOSFETs与IGBTs的热特性差异

7a. 温升的组成部分

7d. 单芯片与瞬态热阻

7c. 更小的芯片与 DCB上更下的热扩散

芯片温升组成的六个部分

热 1.半导体最高额定温度 2.设计余量 3. 功率损耗 W x 4. 芯片-散热器热阻R_{th,JH} 5. 散热器-环境热阻R_{th,HA} 6.环境温度

冷

芯片温升的组成的六个部分

非开关状态温度规格 175 °C

/						
Kollektor-Dauergleichstrom Continuous DC collector current	$T_{\rm C} = 100^{\circ}{\rm C}, T_{\rm vjmax} = 175^{\circ}{\rm C}$	I _{C nom}		900		A
Periodischer Kollektor-Spitzenstrom Repetitive peak collector current	t _P = 1 ms			1800		A
Gesamt-Verlustleistung Total power dissipation	$T_{c} = 25^{\circ}C, T_{vj max} = 175^{\circ}C$	P _{tot}		5,10		kW
Abschaltverlustenergie pro Puls Turn-off energy loss per pulse	$ \begin{array}{ll} I_{C} = 900 \text{ A}, \text{ V}_{CE} = 600 \text{ V}, L_{S} = 45 \text{ nH} & T_{vj} = 25^{\circ}\text{C} \\ \text$	E _{off}		125 160 175		mJ mJ mJ
Kurzschlußverhalten SC data	$ \begin{array}{ll} V_{GE} \leq 15 \; V, \; V_{CC} = 800 \; V \\ V_{CEmax} = V_{CES} \; \text{-} L_{sCE} \; \cdot \text{di/dt} & t_{P} \leq 10 \; \mu \text{s}, \; T_{vj} = 150^{\circ} \text{C} \end{array} $	lsc		3600		A
Wärmewiderstand, Chip bis Gehäuse Thermal resistance, junction to case	pro IGBT / per IGBT	RthJC			29,5	K/kW
Wärmewiderstand, Gehäuse bis Kühlkörper Thermal resistance, case to heatsink	pro IGBT / per IGBT $\lambda_{Paste} = 1 W/(m \cdot K) / \lambda_{grease} = 1 W/(m \cdot K)$	R _{thCH}		16,0		K/kW
Temperatur im Schaltbetrieb Temperature under switching conditions		T _{vj op}	-40		<mark>⇒</mark> 150	°C
'			/			

开关时的温度规格是150 °C (平均芯片温度)

最高 T_i ,开関状态 150°C

最高 T_i · 开関状态 175°C

温度限制不是由SiC MOSFET芯片本身, 而是由其周边元素造成的

芯片和键合线 红外成像图

温度循环造成键合线连接失效示例

半导体最高温度规格

冷

环境温度 – 系统工作的环境

半导体最高温度规格

功率模块的各种冷却方法

大功率IGBT模块使用不同散热器时的散热器热阻

区别在哪?

芯片温升的组成

1.半导体最高额定温度	150 °C
2.设计余量	Δ15 °C
3.功率损耗 (W)x 4.芯片 - 散热器热阻R _{th,JH}	300 W x 0.15 °C/W = Δ45 °C
功率损耗 (W) x 5.散热器-环境热阻R _{th,HA}	300 W x 0.2 °C/W = Δ60 °C
6. 环境温度	30 °C

累计值= 30 °C + 60 °C + 45 °C + 15 °C = 150 °C

SiC MOSFETs与IGBTs的热特性差异

7a. 温升的组成部分

母线电压与栅极电阻R_G对歸一化开关损耗的影响

相对于Si IGBT, SiC 的开关损耗受母线电压与R_G影响更大

电流与结温对歸一化开关损耗的影响

相对于SiC MOSFET · Si IGBT 的开关损耗受温度的影响更大

温度对V_{CE}, V_F和 V_{DS}的影响

相对于IGBT和Si 二极管,温度对SiC 的通态损耗影响更大

总结:不同工作条件下的损耗变化

Cool SiC	IGBT (IKY40N120CH3)	SiC MOSFET (IMZ120R045M1)
开关损耗 E _{TOT} 母线电压由600 V 到 800 V	140%	178%
E _{TOT} IC/ID由25% 到 100%	287%	200%
E _{TOT} T」由25 °C 到 125 °C 导通损耗 V _{CE} /V _{DS} T」由25 °C 到 125 °C	156% 117%	105% 150%
V _F /V _{DSRev} T _J 由25 °C 到 125 °C	97%	150%
V _{CE} /V _{DS} V _G 由+19 V 到 +13 V	110%	260%

IGBT和SiC MOSFET 损耗总结

- SiC MOSFET的开关损耗受母线电压
 的影响较大。
- SiC MOSFET的开关损耗受温度的影响很低。
- SiC MOSFET的R_{DSON}受温度的影响
 较大。
- SiC MOSFET 可在高开关频率和中低
 电流水平下显著地降低功率损耗

SiC MOSFETs与IGBTs的热特性差异

7a. 温升的组成部分

7b. 更低的损耗 尤其是开关损耗

7d. 单芯片与瞬态热阻

7c. 更小的芯片与 DCB上更低的热扩散

R_{THj-sink} 热阻

热阻多层堆叠示例

使用3mm铜基板的IGBT模块安装在风冷散热器时,各层热阻占R_{THj-sink}的百分比

模块截面图

SIC MOSFET 芯片面积更小

100A IGBT 与二极管

总面积≈ 150 mm²

100A SiC MOSFET

|--|--|--|--|--|

总面积≈ 30 mm²

封装尺寸减小 功率密度增加

小的芯片代表着小的热源区域 多芯片代表着更大的热源区域

不同材料的热导率对比

与铜热导率(395 W/mK)作比的相对热导率(%) 注意:导热脂≈ 0.25%, 水≈ 0.15% 及空气 ≈ 0.006% x 铜热导率

预涂高性能热界面(TIM)材料

双面冷却 与 Pin Fin冷却

SiC MOSFETs与IGBTs的热特性差异

7a. 温升的组成部分

芯片温度的红外测量

没有绝缘胶 的涂黑模块

红外热成像与热时间常数

红外热成像视频片段

功耗及芯片温度分布变化 - 2Hz基波频率,30倍慢镜

IGBT结温在低/高基波频率下、相同功率损耗时·的波动

Q7d. Thermals

5Hz工作条件下的IGBT及SiC MOSFET仿真 —1个周期内的功率损耗与温度

infineon

60Hz工作条件下的IGBT及SiC MOSFET仿真 —1个周期内的功率损耗与温度

第二部分

如何对短路、过电流和过电压作保护?

如何计算损耗和结温?

如何估算和测量结温?

英飞凌IPOSIM (网络版本)

输入

Selected Topology: DC/AC Applications - Three Phase - 2 Level

Space Vector Modulation (Standard)		
650	V	
1200	V	
50	А	
60	Hz	
4000	Hz	
0.9		
0.8		
	Space Vector Modula 650 1200 50 60 4000 0.9 0.8	

结果

Simulation Results					
Maximum Junct	ion Temperature				
Switch	80.1 °C				
Diode	62 °C				
Switching Losses					
Switch	16.9 W				
Diode	4.6 W				
Conduction Losses					
Switch	30.1 W				
Diode	7.2 W				
Total Losses					
Switch	47 W				
Diode	11.8 W				
FS75R12KT4_B11					

使用模块验证损耗 – IGBT 示例

有限元分析 – FEA

Ansys - F4 crash test into nuclear reactor outer casing block (Source: Ansys Corp.)

Q7e. Thermals

Copyright © Infineon Technologies AG 2019. All rights reserved

FEA 流程图

CAD 图形

简化图形

FEA 模型与红外成像对比

模块红外成像

FEA 热仿真

用红外成像仪测量 T_i

IGBT芯片占75%功耗 而 二极管芯片占25%功耗

热电偶的使用 -芯片、基板与散热器

基板温度测量 - 将热电偶嵌入到基板上的铣槽

热电偶的使用

冷却过程中利用温度敏感参数测量**T**_i

由FEA 模型拟合出的冷却曲线

温度(°C)

Foster模型数据				
Rthj-case °C/W	0.1097	0.1115	0.1007	0.2008
τ 时间常数(秒)	0.02331	0.2920	1.899	10.55

商业化设备

第二部分

∆V 如何使对地电容充/放电? I = C x dv/dt

通过R_G控制SiC MOSFET的开关速度

R_G in Ohms

传导EMI - 典型寄生电流对地途径及其对应滤波器

斜率控制驱动技术(SRC)

- 使用电流源调节开关速率

星形系统接地

dv/dt 與 EMI 总结

第二部分

长期可靠性的含义

浴盆曲线

浴盆曲线的组成

SiC MOSFETs 是否具有与Si IGBT相媲美的可靠性?

可靠性的含义?

我们应该考虑在特定应用中的可靠性要求

如果英飞凌作为一个供应商,在过去的10年里生产了超过300亿的IGBT芯片,平均每个芯片工作三年,那么可以说英飞凌的芯片具有大约1000亿年的工作经验。

SiC MOSFET 的长期可靠性

栅极氧化层 - GOX

栅极氧化层

- 将门极与源/漏隔离
- 在施加的门极偏压超过V_{GSTH}时,形成逆 转通道
- 由非晶SiO₂制成

可靠性面临的挑战?

- > 时间相关介质击穿 TDDB
- > 偏压温度不稳定性 BTI

- →致命器件故障
- → V_{GSTH} 及 R_{DSON}逐渐漂移

SiC MOSFETs器件中应该格外重视GOX的原因?

SiC 具有**宽带隙** (1.1eV Si 相對 3.2 eV SiC)

SiC 有更高的电压阻断能力 Si 0.3 MV/cm SiC 3.0 MV/cm

阻断状态时更高的电场

增强隊穿效应

Baliga, SiC power devices 2005

SiC 基底与GOX层有更高的缺陷密度

GOX 早期故障的风险更高

Senzaki et al, APL 2006

SiC 的更高缺陷密度

衬底缺陷、颗粒、工艺变化等可能导致GOX变形("外在缺陷") ·从而缩短受影响器件的寿 命 → 早期故障

氧化物变薄模型: GOX 中的任何变形都可以描述为局 部氧化物变薄

GOX 越薄, 处于一定的栅极偏置水平下的电场就越高, 产生故障的时间就越短。

为什么 GOX 中的外在缺陷如此重要?

GOX 总是在最薄弱的环节失败,在大多数情况下,这些外在弱点在生产测试期间无法被检测到。

注:时间相关介质击穿(TDDB)的失效可能性遵循韦布尔分布。

平面DMOS和沟槽型MOS结构的GOX 应力区别

DMOS平面设计中V_{GS}及 GOX 电压应力的权衡

栅极氧化层可靠性评定 - 300天, 2批次,每批次1000个,V_{GS}不断增加

·测试显示出的外在故障率很低,并且非常吻合线性E模型

SiC MOSFETs的长期可靠性

外部 与 内在 偏压温度不稳定性 BTI

- > 外部BTI: 由于离子污染 (Na, K)
 - > 在器件制造过程中出现或在器件工作过程中从外部引入。
 - > Si与SiC MOSFET器件展现出相同的影响.

- > 内在BTI: 取决于 SiC/SiO₂的界面上界面状态和边界陷阱的密度
 - > 受半导体衬底交换电荷载体的能力影响
 - 由于 SiC/SiO₂界面和近界面氧化区域的缺陷密度较高,因此
 SiC MOSFET 器件的BTI较大
 - > 对于 SiC MOSFET 会导致 R_{DSON} 的增加(退化)
 - > V_G和温度可以加速这种效应,但可以进行建模和预测

SiC MOSFET中的 可逆内在BTI 和 永久性栅极阈值电压 V_{GSTH} 漂移

infineon

- > SiC-MOSFET中的2个内在BTI因素:
 - > 完全可逆向上和向下的阈值电压迟滞ΔV_{GSTH}^{HYST}
 - > 永久性 阈值电压漂移 ΔV_{GSTH}^{BTI}

完全可逆的阈值电压迟滞

可逆的VGSTH迟滞可能是由SiC/SiO2界面存在的陷阱产生充放电造成的。

这种效应的幅值:

- > SiC MOSFET 最大值为5V
- > Si MOSFET 最大值为几mV

可逆电压迟滞对SiC MOSFETs的工作没有负面影响。

栅极阈值迟滞对导通瞬间的影响

测试条件 11 m Ω 1200 V SiC MOSFET 模块 Tj = 150 °C $R_G = 20 \Omega$ $V_{bus} = 600 V$ $I_{load} = 100 A$

对比关断电压V_{GS}是-5V时,在关断电压-10 V时 电流(黑线)在较低的栅极电压时已经启动

永久性V_{GSTH}漂移的可能原因

- > SiC与SiO₂的边界陷阱载荷交换需要通过热动力学能垒(ΔE)
- > 效应尺度
 - SiC MOSFETs: <400 mV, 直流应力@ V_{GSmax} 及 T_{imax} 1000小时之内,
 - Si MOSFETs: <40 mV, 直流应力@ V_{GSmax} 及 T_{imax} 1000小时之内,
- > 应用影响
 - > 永久的 V_{GSTH} 及 R_{DSON} 漂移导致功耗增大,同时使得参数偏离设计规范的风险增大

考虑V_{GSTH}偏移时的设计指南 - 静态关断电压的选择

- > 边界条件:
 - → 选定门极开通电压V_{GS(ON)}
 - → 结温=100 °C
 - → R_{DS(on)} @ 50 A 增加15%
- ,开关频率归一化为24/7工作10年
- 归一化开关频率的计算:
 归一化开关频率=
 *实际开关频率.[kHz] * 工作时间比* [%] *目标寿命[年] / 10 [年]
 - > 更多细节请参考Infineon AN2018-09. "Guidelines for CoolSiC™ MOSFET gate drive voltage window."

V_{GSTH} 漂移在实际应用中的影响

影响取決於導通損耗與開關損耗的比例.

	例 1:导通损耗 ~80%	例 2:导通损耗 ~50%
Switching frequency (kHz)	8	30
Nominal current (A)	50	38.5
Output voltage (V)	400	400
Output frequency (Hz)	50	50
DC link voltage (V)	600	600
Power factor	1	1
Thermal resistance (°C /W)	3.6	3.6
Ambient temperature (°C)	40	40

验证V_{GSTH} 漂移对系统的影响

> 把V_{GS(on)}调低~<0.5V,可以在实验室检测20年后V_{GS(th)}漂移对系统的影响

SiC MOSFETs的长期可靠性

宇宙辐射 Cosmic Radiation

宇宙辐射失效模式

高能粒子可以产生高度集中的带电等离子体区域, 进而导致大量的电荷倍增, 从而导致半导体中的破坏性放电。

数据手册中的额定宇宙辐射失效率 FIT

FZ1200R33HE3 1200 A 3.3 kV IGBT 模块

Kollektor-Emitter-Gleichsperrspannung DC stability	T _{vj} = 25°C, 100 fit	V _{CE} D	2100	v
				í — — — — — — — — — — — — — — — — — — —

FZ600R65KE3 600 A 6.5 kV IGBT 模块

Modul / module

Isolations-Prüfspannung insulation test voltage	RMS, f = 50 Hz, t = 1 min.	VISOL	10,2	kV
Teilentladungs Aussetzspannung partial discharge extinction voltage	RMS, f = 50 Hz, Q _{PD} typ 10 pC (acc. to IEC 1287)	VISOL	5,1	kV
Kollektor-Emitter-Gleichsperrspannung DC stability	T _{vj} = 25°C, 100 fit	V _{CE D}	3800	V
Material Modulgrundplatte material of module baseplate			AISIC	

FIT (failure in 时间)的定义及受海拔的影响

1 FIT (**F**ailures **I**n 时间) = one failure in 10⁹ operation hours of the device.

MTBF calculation

- 100 : Fit rate of component at given voltage
- 50 : number of components in the application
- 18 : operation hours in hours per day
- 300 : operation hours in days per year

MTBF = 37 years for 50 components in the application

在实际应用中宇宙辐射引发的FIT计算示例

宇宙辐射故障率 FIT 取决於:

- 功率器件自身特性 (FIT V_{DC} 曲线)
- 工作电压
- 工作模式
- 其他因数 (如 高度)

	每天工作	V _{DC}	故障率 FIT	每天平均
每天工作时间	时间比例 %	[V]	FZ750R65KE3	故障率
5 分鈡	0,3%	4200	3000	10
30分鈡	2,1%	4000	600	13
8 小时	33,3%	3800	100	33
15小时 25分鈡	64,2%	3600	20	13
总故障率 (受电压时间为 100%)			69	
总故障率 (在开关状系	态下 受电压时间为	50%)		35

典型的CR FIT值 - 25 °C、水平线、200A Si 与 SiC半桥模块

在高电压时,SiC MOSFET 的CR FIT 比Si 器件 低得多,因为:
SiC MOSFET 的有效面积比同电流的Si IGBT/二极管为小
SiC MOSFET 不需要续流二极管,因而降低了CR FIT
注意当温度增加时,Si 器件的FIT降幅比SiC MOSFET为高

239

Cool SiC™

infineon

SiC MOSFETs的长期可靠性

241

温度循环导致的损耗机理是什么? ^{键合线疲劳}

键合线疲劳产生原因:

- a) 温度导致键合线位移
- b) 铝与硅热膨胀系数不匹配导致焊接区域疲劳

键合线失效示例

键合线足部裂缝

键合线翘曲脱离

温度循环引起芯片与焊接层之间的应力

	热膨胀系数 CTE	楊氏模量
Si	≈ 2.6 x 10 ⁻⁶ / °C	≈ 62 GPa
SiC	≈ 4 x 10 ⁻⁶ / °C	≈ 450 GPa
焊锡	≈ 23 x 10 ⁻⁶ / °C	≈ 40 GPa
铜	≈ 17 x 10 ⁻⁶ / °C	≈ 117 GPa

在225°C时,焊锡融化,没有应力

芯片与焊料分层

芯片焊锡层超声波扫描

最大结温100 °C下 SiC与Si IGBT的功率循环能力

设计周期数 = 有5%测试样片出现5%正向电压增加的功率循环周期

Cool SiC™

在最高结温为100°C 和150°C下的SiC功率循环

246

Cool ™SiC

5Hz工作的IGBT及SiC MOSFET的温度波动

寿命如何预估? 7个步骤:A-F

统计性参数及寿命评估

SiC MOSFET 需要滿足的多種要求

答: 可靠都是相对的,它取决于工作条件和需求。

IGBT 和 SiC MOSFET 长期稳定性总结

健康可以被实时监测到吗?

Copyright © Infineon Technologies AG 2019. All rights reserved

第二部分

SiC MOSFETs 在硬并联下工作

为什么要并联器件?

- > 器件小可以更灵活,令杂散电感更小,开关损耗更低。
- > 使用大批量生产的封装。
- > 大电流的模块难以设计和制做。
- > 在大电流模块,很难令所有芯片的栅极电感相等。
- > 小模块便于在散热器上分散排布,以改善热扩散。

相比IGBT,SiC 的优势和劣势

> SiC MOSFET 具有"更软"的跨导特性,因此对相似的绝对V_{GS}分布,电流不平衡性更低

- > SiC MOSFETs的R_{DSON}随温度有更大的增加,因此对电流平衡有很强的正反馈
- > SiC MOSFET 的开关损耗随温度增加非常小
- 在SiC MOSFETs器件参数分布中, R_{DSON} 与开关损耗呈现负关联。

4 x 200A SiC MOSFET 半桥结构的硬并联PCB排布

电源板 PCB 布局

双脉冲测试原理图

下管的测试方法 附加脉冲用于令上管以同步整流模式工作

辅助源极连接中的意外电流

辅助源加入阻抗,对栅极无影响的栅极驱动电路

静态测试 @各模块600V, R_G=5Ω, 250A, 25 °C, 上MOSFET负载,使用同步整流

动态均流- 关断@ 各模块800 V, 250 A, 100 °C, 下管MOSFET.

Infineon

蒙地卡羅方法

Copyright © Infineon Technologies AG 2019. All rights reserved

蒙地卡羅方法 - 随机模块组合中**Tj**的计算方法 - 6步

50,000个随机选择的模块 T_j数据直方图, 3模块并联

模块 1,2,3. 统计性结温分布

+/-7 °C 温差 (3σ)

英飞凌 SiC MOSFETS的典型封装

- 单管 3 或 4 引脚
- Easy™ 模块 -半桥/Boost
- Easy™ 模块 3 电平
- Easy™ 模块 三相桥
- 62mm 半桥

● 1700V 及 3.3kV XHP™ 2

小心权衡 成本 及 可靠性

结论 - 多种因素的权衡

SIC MOSFETs 总结

成本 - 考虑ROI

快速开关 dv/dt and EMI

长期可靠性

损耗以及 R_{TH} 静态和动态特 性

参考资料

- Reference Book. IGBT 模块s Technologies, driver and application. 2nd edition paperback. 3rd edition hardback.
- > Infineon AN 2017-41. Evaluation Board for CoolSiC[™] Easy1B half-bridge 模块s.
- Infineon AN 2017-04. Advanced Gate Drive Options for Silicon- Carbide (SiC) MOSFETs using EiceDRIVER™.
- > Wolfspeed/Cree. Application Considerations for Silicon Carbide MOSFETs.
- > ST Microelectronics. Design rules for paralleling of Silicon Carbide Power MOSFETs
- > Infineon AN2014-12. EiceDRIVER[™] 1EDI Compact Family. Technical description.
- > Infineon AN2018-09. Guidelines for CoolSiC[™] MOSFET gate drive voltage window
- > Semikron AN-7003. Gate Resistor Principles and Applications.
- > Infineon AN2017-14. Evaluation Board EVAL-1EDI20H12AH-SIC.
- > Agile Switch APEC 2017. Driving Silicon Carbide Power 模块s Efficiency 及 Reliability
- > Infineon AN2007-04. How to calculate and minimize the dead 时间 requirement for IGBT's properly.
- > Infineon AN2017-46. CoolSiC[™] 1200 V SiC MOSFET Application Note
- > Power Integrations/Concept. AN9701 IGBT drivers correctly calculated.
- > Bodo's Power Feb 及 March 2016. Temperature limits for power 模块s Parts 1 及 2.
- > Wolfspeed/Cree. Design Considerations for Designing with Cree SiC 模块s Parts 1及2.

SiC MOSFET application notes on Infineon website at:

https://www.infineon.com/cms/en/product/power/wide-band-gap-semiconductors-sic-gan/siliconcarbide-sic/coolsic-mosfet/#!documents Then select application notes

Application notes and data can also be obtained from your local sales representative.

Part of your life. Part of tomorrow.

