Power Electronics for Electric Vehicles

Traction Inverter

Home outlet Fast

st char (DC)

Not in HEV

SiC MOSFETs can replace IGBTs with a smaller footprint, reduced losses and greater battery autonomy

- Usually 3-phase permanent magnet motors are used for traction
- Operating voltage from 300V to 750V
- Inverter must be bi-directional

life.auamented

- Feeds the electric motor when driving the wheels
- Streams energy back on HV Bus when vehicle brakes applied

SiC MOSFET Based 80kW Traction Inverter

SiC MOSFETs provide

- More than 50% module/package size reduction
- $\checkmark \qquad \text{Much smaller semiconductor area} \rightarrow \text{ultra compact solution}$
- >1% efficiency improvement (75% lower loss)
- \checkmark Much lower losses at low-medium load \rightarrow longer autonomy
- 80% cooling system downsize
- $\checkmark\,$ Lower losses at full load \rightarrow smaller cooling system
- ✓ Lower Delta (T_i - T_{fluid}) in the whole load range → best reliability

Power Loss Estimation for 80kW EV Traction Inverter

Switch (S1+D1) implementation

- Topology: Three phase inverter
- Synchronous rectification (SiC version)
- DC-link voltage: 400V_{dc}
- Current 480Arms (peak) 230Arms (nom)
- Switching frequency: 16kHz
- V_{gs} =+20V/-5V for SiC, V_{ge} =±15V for IGBT
- Cos(phi): 0.8
- Modulation index (MI): 1
- Cooling fluid temperature: 85°C
- R_{thJ-C(IGBT-die)}=0.4°C/W; R_{thJ-C(SiC-die)}=1.25°C/W
- $T_j \le 80\%^* T_{jmax}^\circ C$ at any condition

4 x 650V,200A IGBTs + 4 x 650V,200A Si diodes

VS.

7 x 650V, 100A SiC MOSFETs SCTx100N65G2

Power Loss at Peak Condition (480Arms,10sec)

SiC MOSFETs run at higher junction temperatures in spite of lower losses This is due to the exceptional SiC R_{DSON} x Area FOM

Loss Energy	Si-IGBTs + Si-diodes Solution	Full-SiC Solution	
Total chip-area	400 mm² (IGBT) + 200mm² (diode)	140 mm ²	← 4.3x lower
Conduction losses* (W)	244.1	377.9	
Turn-on losses* (W)	105.1	24.1	← > 4x lower
Turn-off losses* (W)	228.4	32.7	← > 7x lower
Diode's conduction losses* (W)	45.9	Negligible	
Diode's Q _{rr} losses* (W)	99.5	Negligible	
(S1+D1) Total losses* (W)	723	435	← 40% lower
Junction Temperature (°C)	142.8	162.6	← T」~ 80% Tjma
* Typical power loss values			

* Typical power loss values

Sic MOSFET Enables Lower Power Dissipation f_{sw}=16kHz, Operating phase current up to 230A_{rms} and Higher Efficiency

Lower losses mean smaller cooling system and longer battery autonomy

Inverter losses vs %load

SiC shows much lower losses in the whole load range

Inverter efficiency vs %load

* Simulated efficiency takes into account only the losses due to the switches and diodes forming the bridge inverter

SiC offers 1% higher efficiency or more over the whole load range!

SiC MOSFETs have the Lowest Conduction Losses

The lowest possible conduction losses can only be achieved with SiC MOSFETs

When "n" MOSFETs are paralleled the total $R_{DS(on)}$ must be divided by "n" allowing ideally zero conduction losses

When "n" IGBTs are paralleled the $V_{ce(sat)}$ doesn't decrease linearly, the minimum achievable on-state voltage drop is about 0.8-1V

Hard-Switched Power Losses SiC MOSFET vs. Si IGBT

SiC MOSFET vs. trench gate field-stop IGBT

Parameters & Conditions	Die size (Normalized)	V _{on} typ. (V) @ 25°C, 20A	V _{on} typ. (V) @ 150°C, 20A	E _{on} (μJ) @ 20Α, 800V 25°C / 150°C	E _{off} (μJ) @ 20Α, 800V 25°C / 150°C	E _{off} 25°C / 150°C difference (%)
SIC MOSFET	0.52	1.6	1.8	500 / 450 [*]	350 / 400	+15% from 25°C to 150°C
IGBT	1.00	1.95	2.2	800 / 1300**	800/ 1900	+140% from 25°C to 150°C

* Including SiC intrinsic body diode Q_{rr} ** Including the Si IGBT copack diode Q_{rr}

SIC MOSFET

- Data measured on SiC MOSFET engineering samples;
- SiC MOSFET device : SCT30N120, 1200V, 34A (@100°C), 80mΩ, N-channel
- Si IGBT device: 25A(@100°C) 1200V ST trench gate field-stop IGBT (T_{j-max}=175°C)
- SiC switching power losses are considerably lower than the IGBT ones
- At high temperature, the gap between SiC and IGBT is insurmountable

SiC die size compared to IGBT

On-Board Charger

SiC MOSFETs offer more efficient solutions at higher switching frequency and smaller size

Single-phase architecture → SiC MOS 650V Three-phase architecture → mainly SiC MOS 1200V

Power Rectifiers for OBC

All AEC-Q101 qualified PPAP capable

life.augmented

SiC MOSFET improves PFC Boost Topologies

PFC Boost Topologies

Cases	P _{cond-switch} [W] (Each Switch)	P _{turn-off} [W] (Each Switch)	P _{turn-on} [W] (Each Switch)	P _{cond,diode} [W] (Each Diode)	P _{turn-off,diode} [W] (Each Diode)	Each Р _{тм5050н-12W} [W]	P _{TOT(BOOST)} [W]	P _{TOT(SiC)} [W]	Efficiency
120VAC, 16Arms	1.13	3.67	11.29	3.59	TBD	7.20	68.13	19.67	96.452%
240VAC, 27Arms	1.40	4.51	12.42	16.11	TBD	13.15	121.50	34.44	98.125%
220VAC, 32Arms	2.39	5.03	12.97	19.48	TBD	16.13	144.27	39.87	97.951%

Interleaved PFC boost, single phase

VDC(OUT)=400V, Switch: SiC MOSFET, 650V, 25mOhm(25C,typ), Diode: 600V SiC Schottky, 20A (STPSC20H065C-Y), T_J=125C

			= }
Ă	<u></u>	-₽-	

					P _{Qrr,body_diode}	Each			
	P _{cond-switch} [W]	$P_{turn-off}[W]$	P _{turn-on} [W]	P _{cond,sync-rec} [W]	[W]	P _{TN5050H-12W}			
Cases	(Each Switch)	(Each Switch)	(Each Switch)	(Each Switch)	(Each Switch)	[W]	P _{TOT(BOOST)} [W]	P _{TOT(SiC)} [W]	Efficiency
120VAC, 16Arms	2.25	2.51	6.48	1.34	TBD	7.20	39.56	12.59	97.939%
240VAC, 27Arms	2.80	4.17	7.82	7.26	TBD	13.15	70.40	22.05	98.914%
220VAC, 32Arms	4.78	5.21	8.49	9.30	TBD	16.13	87.80	27.77	98.753%

Totem-pole semi-bridgeless PFC boost, single phaseVDC(OUT)=400V,Switch: SiC MOSFET, 650V, 25mOhm(25C,typ),T_J=125C

More compact, Lower Power Loss

Auxiliary DC/DC converter

ST can cover the whole system with state-of-the-art technologies including SiC and Isolated GAP drivers

New 80/100V MOSFET Series: STripFET F7

ST cover the complete system with state-of-the-art technologies including SiC and Isolated GAP drivers

TAB

H²PAK-6

- STH315N10F7-2/STH315N10F7-6
- Rdson 1.9 mΩ typ
- VDS = 100 V
- ID = 180 A
- 100% avalanche tested
- Tjmax 175° C
- Available in H²PAK-2/6
- AEC Q101 qualified in KGD die form

Already used for 48V DC/DC converters by key customer

Power Technology

ST offers both silicon and silicon carbide discrete power components

Automotive Grade Rectifier Portfolio

Ultrafast, SiC and Schottky

Automotive Grade SiC Rectifier

SiC Schottky

Port number		(per o	/] max diode) Dl _o		<mark>w</mark> [A] diode)	Ι_R [μA] (per diode)	Q_{cj} [nC] (per diode)		Ρ	ack	ages	5				
Part number	I _{F(AV)}	25°C	150°C	10µs 25°С	10ms 125°C	Vr=650V 150°C	V _R =400V	TO-220AC	TO-220AB	DO-2201	DO-247	TO-247	D ² PAK			
SiC New blank series 650V																
STPSC6C065-Y	6 A			375	43	250	15.2									
STPSC10H065-Y	10 A	1.75	1.75	1.75	1.75	2.5	470	80	425	28.5						
STPSC12H065-Y	12 A			400	90	500	36									
STPSC12065-Y	12 A	1.45	1.65	220	40	1000	12									
STPSC20H065C-Y	2 x 10A	1.75	2.5	470	80	425	28.5									
STPSC20065-Y	20 A	1.45	1.65	300	60	2000	30									
STPSC40065CWY	2x20A	1.45	1.05	300	60	2000	30									

			/] max			l _R [μΑ] max	Q _{cj}	Pac	kage
Part number	l _{F(AV)}	$I_{\rm F} = I_{\rm O}$		I _{FSM} [A]		ης [μη] Παλ	[nC] typ	TO-220	D²PAK
		25°C	150°C	10µs 25°С	10ms 25°C	Vr=1200V 150°C	V _R =800V	-0 T	D²P
			Si	C 120	00V				
STPSC10H12-Y	10 A			220	55	400	60		
STPSC15H12-Y	15 A	1.5	2.25	330	80	600	70		
STPSC20H12-Y	20 A			440	110	800	95		

ST SiC Schottky Rectifiers

35

40

30

20

IF(A)

25

Silicon Carbide Schottky Rectifiers

• SiC 650 V G2 and 1200 V technology: using JBS (Junction-Barrier Schottky)

ST SiC Schottky Rectifiers have Superior Forward Surge Capabilities

The ST advantage

ST SiC Schottky Rectifiers exhibit Smaller Temperature Swing

Comparing to other vendor (using electro-thermal model)

Better clamping effect and lower V_F permits to significantly reduce the junction temperature during transient phases in the application. → Impact on thermal fatigue

1000W PFC start-up Pspice simulation 90V, 70kHz, Cout = 600μF, L = 270μH, Tc = 125°C

ST SiC Rectifier Benefits

The ST SiC advantage

Low forward conduction losses and low switching losses

High efficiency \rightarrow high added value of the power converter Possibility to reduce size and cost of the power converter

Soft switching behaviour

Low EMC impact \rightarrow easy design/certification \rightarrow Good time to market

High power integration (dual-diodes)

BOM cost reduction High added value of the power converter Gain on PCB and mounting cost

High forward surge capability (G2)

High robustness \rightarrow Good reliability of the power converter Easy design \rightarrow Good time to market Possibility to reduce diode caliber \rightarrow BOM cost reduction

Silicon IGBT Technologies

Switching Frequency vs. Break Down Voltage

650V "M" Series IGBTs

Trench field stop technology

Thin IGBT wafer technology at 650 V for a more rugged, efficient and reliable power drive system. For EV/HEV motor control

Automotive

Key Features

- A wide Product Range up to 120A
- 175°C max junction temperature
- Very Low VCE(sat) (1.55V typ) at ICN 100°C
- Self ruggedness against short circuits events
- Low switching-off losses
- Safe paralleling
- Optimized co-packed free wheeling diode option
- AEC-Q101 qualified for die form in T&R KGD

Auto Grade Thyristors

Design Value

- AEC-Q101 PPAP Available on request
- High switching life expectancy
- Enable system to resist 6kV surge
- High speed power up / line drop recovery

Features	TN5050H	TN3050H			
V _{DRM} / V _{RRM}	1,200 V ov	er T _J range			
Max T _J	-40°C to) +150°C			
V _{DSM} / V _{RSM}	1300 V	1400 V			
I _{TRMS} (T _c =125°C)	80 A	30 A			
I _{TSM} (10ms,25°C)	580 A	300 A			
V _{TO} (150°C)	0.88V	0.88V			
R _D (150°C)	$6~{ m m}\Omega$	14 m Ω			
I _{GT} (25°С)	10 to 50 mA	10 to 50 mA			
dV/dt (800V-150°C)	1 kV/µs				

In-rush current limiting SCR for OBC

.

A better way to turn on your system

Existing Isolation Technologies

Isolation technologies

Polymeric/Ce	eramic Isolation	Thick Ox	ide Isolation				
Isolation: film of polymer (or othe Custom assembly process require	er dielectric such as DAF, glass). red.	Isolation: Silicon Oxide grown on top of active silicon area (standard silicon IC technologies)					
RF Couplers	Optocouplers	capacitive coupling	magnetic coupling				
Tx Coil Wires Tx Die Insulation Rx Coil	Light path Photo LED		INPUT				
The section Dir CASS For the section Dir For the	Compound Leadframe Slicen K	IC1 IC2	IC1 IC2				
 Good parametric stability over time Good CMTI immunity Limited communication speed Assembly complexity 	 Dielectric ageing: parametric instability over time Limited CMTI immunity 	 Good parametric stability over time Limited CMTI immunity Sensitive to electric fields 	 Good parametric stability over time Very good CMTI immunity Good immunity to magnetic and electric fields 				

gapDRIVETM :Galvanically Isolated Gate Driver

Galvanically Isolated Gate Driver technology

• Automotive (Hybrid\Electric Vehicles)

- Motor Control
- DC/DC Converters
- Battery Chargers
- Industrial
 - 600/1200 V Inverters
 - Automation, Motion Control
 - Welding
- Power Conversion
 - Solar Inverters
 - UPS Systems
 - AC/DC, DC/DC Converters
 - Windmills
- Home/Consumer
 - Induction Cooking
 - White goods

The STGAP1S *galvanically isolated* gate driver, features advanced **controls**, **protections** and **diagnostic**.

- CONTROL: A SPI interface to enable, disable and configure several features → Optimize your driving conditions.
- PROTECTION: Several features to mange anomalous conditions (OCP, DESAT, 2LTO, VCE_Clamp) and to prevent them (UVLO, OVLO, ASC, MillerCLAMP)
- **DIAGNOSTIC:** The SPI interface allows access to registers containing information about the status of the device.

STGAP1S – Main Features

Galvanically Isolated Gate Driver technology

AEC-Q100 grade 1

Wide operating range (-40°C -125°C)

SPI Interface

+

Parameters programming and diagnostics Daisy chaining possibility

Advanced features

+

5A Active Miller clamp, Desaturation, 2-level turn-off, VCEClamp, ASC

Short propagation delay

(100 ns typ.; 130 ns max over temperature) 5 A sink/source current

> **Fully protected – System safety** UVLO, OVLO, Over-Current, INFilter, Thermal Warning and Shut-Down

STGAP1S Isolation Characteristics

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

Parameter		Sym	nbol	Test Condi	tions	Characteristic	Unit
Maximum Working isolation Voltage		V _{IC}	ORM			1500	V _{PEAK}
Input to Output test voltage		V _{PR}			be and sample test 1.6, t _m = 10 s rge < 5 pC	2400	V _{PEAK}
		۷F	PR	Method b, 100% Production test $V_{PR} = V_{IORM} \times 1.875$, $t_m = 1 s$ Partial discharge < 5 pC		2815	V _{PEAK}
Transient Overvoltage		VIC	ОТМ	Type test; t _{ini}	= 60 s	4000	V _{PEAK}
Maximum Surge isolation Volta	age		DSM	Type test;		4000	V _{PEAK}
Isolation Resistance		R	C	V_{IO} = 500 V at T_S		> 10 ⁹	Ω
Isolation Withstand Voltage		V	SO	1 min. (type test)		2500\3536	$V_{\text{rms} \setminus \text{PEAK}}$
Isolation Test Voltage		V _{ISC}	D,test	1 sec. (100	% production)	3000\4242	$V_{\text{rms} \setminus \text{PEAK}}$
Parameter	Symb	loc	Value	Unit	Conditions		
Creepage (Minimum External Tracking)	CP	G 8				input terminals to est distance path a	•
Comparative Tracking Index (Tracking Resistance)	СТІ	l ≥40)	DIN IEC 112/VD	112/VDE 0303 Part 1	
Isolation group			II		Material Group	(DIN VDE 0110, 1	/89, Table1)

SiC MOSFET Technology Roadmap

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

Silicon-Carbide MOSFETs

Key Benefits

On-Resistance Versus Temperature

ST is the only supplier to guarantee max Tj as high as 200°C in plastic package

ST SiC MOSFET shows lowest Ron at high temperatures

Wide Bandgap Materials

SiC represents a radical innovation for power electronics

	Si	GaN	4H-SiC
$E_{g}\left(eV ight)$ – Band gap	1.1	3.4	3.3
$V_{s}(cm/s)$ – Electron saturation velocity	1x10 ⁷	2.2x10 ⁷	2x10 ⁷
$\mathbf{E}_{\mathbf{r}}$ – dielectric constant	11.8	10	9.7
E_{c} (V/cm) – Critical electric field	3x10 ⁵	2.2x10 ⁶	2.5x10 ⁶
k (W/cm K) thermal conductivity	1.5	1.7	5
E _c low on resistance E _q low leakage, high Tj	V _s	Higher switchi Lower switchir	
k Operation > 200 °C Reduced Cooling Requirement	nts		

life.auamentec

MOSFET RDS(on) Figure of Merit at TJ=150C

SiC MOSFETs are not all the same

ST 650V 2nd Gen SiC MOSFETs

SCTW100N65G2AG - 2nd Generation

SCTW100N65G2AG

- R_{DS(on)} (typ @25°C) : 20 mOhm
- R_{DS(on)} (typ @200°C) : 23 mOhm
- Q_g (typ) : 215 nC
- Package : HiP247[™]
 - ST SiC MOSFET shows lowest Ron increase at high temperatures
 - ST is the only supplier to guarantee max Tj as high as 200°C
 - Gate driving voltage = 20V

- Full Maturity: July 2016 (Industrial Grade)
- Full Maturity: H1 2017 (Automotive Grade)

Silicon Carbide MOSFET Packages

Through hole proposal

SMD

HV Silicon Power MOSFET Technologies

MDmesh ™ M5-Series

The leading technology for hard- switching topologies

Key Features

- Industry's lowest
 R_{DS}(on) in the Market
- High switching speed
- 550 / 650V classes

Benefits

- highest efficiency in the application
- Smaller form factor of final system
- Especially targeted for hard switching (PFC, Boost, TTF, Flyback)

MDmesh [™] M2-Series

The best fit for resonant / LLC topologies

Key Features

- Up to 30% lower Qg (equivalent die size)
- Optimized Coss profile
- 400 / 500/ 600 / 650V classes

<u>Benefits</u>

- Reduced switching losses through optimized (Qg) (Ciss, Coss)
- Enhanced immunity vs ESD & Vgs spikes in the application
- Especially targeted for HB LLC, TTF, Flyback..)

SuperMESH ™ K5-Series

State-of-the-arte in the VHV (Very-High-Voltage) Class

Key Features

- Extremely good RDS(on) at very high BVDSS
- High switching speed
- 800 / 850 / 950V classes available now
- 1050 / 1.2k / 1.5kV classes
 in development

Benefits

- High efficiency with lower design complexity
- Especially targeted for flyback LED topologies and high voltage range in the application

MDmesh [™] DM2-Series

The best fit for F/B ZVS topologies

Key Features

- Integrated fast body diode
- Softer commutation behavior
- Back-to-Back G-S zener
 protected
- 500 / 600 / 650V classes

Benefits

- Reduced switching losses through optimized (Qg) (Ciss, Coss)
- High peak diode dV/dt capabilities
- Best use in Full Bridge
 ZVS

Silicon: MDmesh[™] 600-650V SJ Technologies

Short Term Roadmap

LV Silicon Power MOSFET Technologies

