Power Electronics for Electric Vehicles

Traction Inverter

SiC MOSFETs can replace IGBTs with a smaller footprint, reduced losses and greater battery autonomy

- Usually 3-phase permanent magnet motors are used for traction
- Operating voltage from 300V to 750V
- Inverter must be bi-directional

life.auamented

- Feeds the electric motor when driving the wheels
- Streams energy back on HV Bus when vehicle brakes applied

SiC MOSFET Based 80kW Traction Inverter

SiC MOSFETs provide

- **More than 50% module/package size reduction**
- \checkmark Much smaller semiconductor area $\hat{\tau}$ ultra compact solution
- **>1% efficiency improvement (75% lower loss)**
- \checkmark Much lower losses at low-medium load $\hat{\to}$ **longer autonomy**
- **80% cooling system downsize**
- Lower losses at full load **smaller cooling system**
- \checkmark Lower Delta (T_j-T_{fluid}) in the whole load range \Rightarrow best reliability

Power Loss Estimation for 80kW EV Traction Inverter

Switch (S1+D1) implementation

- Topology: Three phase inverter
- Synchronous rectification (SiC version)
- DC-link voltage: $400V_{dc}$
- Current 480Arms (peak) 230Arms (nom)
- Switching frequency: 16kHz
- V $_{\rm gs}$ =+20V/-5V for SiC, V $_{\rm ge}$ =±15V for IGBT
- Cos(phi): 0.8
- Modulation index (MI): 1
- Cooling fluid temperature: 85℃
- $R_{thJ-C(IGBT-die)}=0.4°C/W; R_{thJ-C(SiC-die)}=1.25°C/W$
- $T_i \leq 80\%$ * T_{imax} °C at any condition

4 x 650V,200A IGBTs + 4 x 650V,200A Si diodes

vs.

7 x 650V, 100A SiC MOSFETs SCTx100N65G2

Power Loss at Peak Condition (480Arms,10sec)

SiC MOSFETs run at higher junction temperatures in spite of lower losses This is due to the exceptional SiC R_{DSON} x Area FOM

* Typical power loss values

SiC MOSFET Enables Lower Power Dissipation f_{sw}=16kHz, Operating phase current up to 230A_{rms} and Higher Efficiency

Lower losses mean smaller cooling system and longer battery autonomy

2,500.0 2,000.0 ϵ 75% lower loss lower los $\Sigma_{\text{tot}}^{1,500.0}$
 Σ_{0}^{3} 1,000.0 5% 500.0 0.0 0% 20% 40% 60% 80% 100% 120% \rightarrow IGBT $-$ SiC % load

Inverter losses vs %load

SiC shows much lower losses in the whole load range

Inverter efficiency vs %load

* Simulated efficiency takes into account only the losses due to the switches and diodes forming the bridge inverter

SiC offers 1% higher efficiency or more over the whole load range!

SiC MOSFETs have the Lowest Conduction Losses

The lowest possible conduction losses can only be achieved with SiC MOSFETs

When "n" MOSFETs are paralleled the total $R_{DS(on)}$ must be divided by "n" allowing ideally zero conduction losses

When "n" IGBTs are paralleled the $V_{ce(sat)}$ doesn't decrease linearly, the minimum achievable on-state voltage drop is about 0.8 – 1V

Hard-Switched Power Losses SiC MOSFET vs. Si IGBT

SiC MOSFET vs. trench gate field-stop IGBT SiC MOSFET vs. trench gate field-stop IGBT

* Including SiC intrinsic body diode Q_{rr} ** Including the Si IGBT copack diode Q_{rr}

SiC MOSFET

- Data measured on SiC MOSFET engineering samples;
- SiC MOSFET device : SCT30N120, 1200V, 34A (@100°C), 80mΩ, N-channel
- Si IGBT device: $25A(@100°C)$ 1200V ST trench gate field-stop IGBT ($T_{i-max}=175°C$)
- SiC switching power losses are considerably lower than the IGBT ones
- At high temperature, the gap between SiC and IGBT is insurmountable

SiC die size compared to IGBT

On-Board Charger

SiC MOSFETs offer more efficient solutions at higher switching frequency and smaller size

Single-phase architecture \rightarrow SiC MOS 650V Three-phase architecture \rightarrow mainly SiC MOS 1200V

Power Rectifiers for OBC

All AEC-Q101 qualified PPAP capable

life.augmented

SiC MOSFET improves PFC Boost Topologies

PFC Boost Topologies

Interleaved PFC boost, single phase

VDC(OUT)=400V, Switch: SiC MOSFET, 650V, 25mOhm(25C,typ), Diode: 600V SiC Schottky, 20A (STPSC20H065C-Y), T_J=125C

Totem-pole semi-bridgeless PFC boost, single phase VDC(OUT)=400V, Switch: SiC MOSFET, 650V, 25mOhm(25C,typ), T_J =125C

More compact, Lower Power Loss

Auxiliary DC/DC converter

ST can cover the whole system with state-of-the-art technologies including SiC and Isolated GAP drivers

New 80/100V MOSFET Series: STripFET F7

ST cover the complete system with state-of-the-art technologies including SiC and Isolated GAP drivers

TAB

 H^2 PAK-6

- **STH315N10F7-2/ STH315N10F7-6**
- **Rdson 1.9 mΩ typ**
- **VDS = 100 V**
- **ID = 180 A**
- **100% avalanche tested**
- **Tjmax 175**°**C**
- **Available in H²PAK-2/6**
- **AEC Q101 qualified in KGD die form**

Already used for 48V DC/DC converters by key customer

Power Technology

ST offers both silicon and silicon carbide discrete power components

Automotive Grade Rectifier Portfolio

Ultrafast, SiC and Schottky

Automotive Grade SiC Rectifier

SiC Schottky

ST SiC Schottky Rectifiers

35

 40

 30^o

 $20₀$

 $IF(A)$

 25

Silicon Carbide Schottky Rectifiers

• SiC 650 V G2 and 1200 V technology: using JBS (Junction-Barrier Schottky)

JBS blocking the positive thermal coefficient effect Bipolar behaviour

ST SiC Schottky Rectifiers have Superior Forward Surge Capabilities

The ST advantage

ST SiC Schottky Rectifiers exhibit Smaller Temperature Swing

Comparing to other vendor (using electro-thermal model)

Better clamping effect and lower V_F permits to significantly reduce the junction temperature during transient phases in the application. \rightarrow Impact on thermal fatigue

1000W PFC start-up Pspice simulation 90V, 70kHz, Cout = 600µF, L = 270µH, Tc = 125°C

ST SiC Rectifier Benefits

The ST SiC advantage

market **Low forward conduction losses and low switching losses**

High efficiency \rightarrow high added value of the power converter Possibility to reduce size and cost of the power converter

Soft switching behaviour

Low EMC impact \rightarrow easy design/certification \rightarrow Good time to

High forward surge capability (G2)

High robustness \rightarrow Good reliability of the power converter Easy design \rightarrow Good time to market **Possibility to reduce dide caliber** \rightarrow **BOM cost reduction High power integration (dual-diodes)**

BOM cost reduction High added value of the power converter Gain on PCB and mounting cost

Silicon IGBT Technologies

Switching Frequency vs. Break Down Voltage

650V "M" Series IGBTs

Trench field stop technology

Thin IGBT wafer technology at 650 V for a more rugged, efficient and reliable power drive system. For EV/HEV motor control

Automotive

Key Features

- A wide Product Range up to 120A
- 175°C max junction temperature
- Very Low VCE(sat) (1.55V typ) at ICN 100ºC
- Self ruggedness against short circuits events
- Low switching-off losses
- Safe paralleling
- Optimized co-packed free wheeling diode option
- AEC-Q101 qualified for die form in T&R KGD

Auto Grade Thyristors

Design Value

- **AEC-Q101 PPAP Available on request**
- High switching life expectancy
- Enable system to resist 6kV surge
- High speed power up / line drop recovery

In-rush current limiting SCR for OBC

A better way to turn on your system

Existing Isolation Technologies

Isolation technologies

gapDRIVETM :Galvanically Isolated Gate Driver

Galvanically Isolated Gate Driver technology

• Automotive (Hybrid\Electric Vehicles)

- Motor Control
- DC/DC Converters
- Battery Chargers
- Industrial
	- 600/1200 V Inverters
	- Automation, Motion Control
	- Welding
- Power Conversion
	- Solar Inverters
	- UPS Systems
	- AC/DC, DC/DC Converters
	- Windmills
- Home/Consumer
	- Induction Cooking
	- White goods

- **CONTROL:** A SPI interface to enable, disable and configure several features \rightarrow Optimize your driving conditions.
- **PROTECTION:** Several features to mange anomalous conditions (OCP, DESAT, 2LTO, VCE_Clamp) and to prevent them (UVLO, OVLO, ASC, MillerCLAMP)
- **DIAGNOSTIC:** The SPI interface allows access to registers containing information about the status of the device.

STGAP1S – Main Features

Galvanically Isolated Gate Driver technology

AEC-Q100 grade 1

Wide operating range (-40°C -125°C)

SPI Interface

+

+

Parameters programming and diagnostics Daisy chaining possibility

Advanced features

+

5A Active Miller clamp, Desaturation, 2-level turn-off, VCEClamp, ASC

Short propagation delay

(100 ns typ.; 130 ns max over temperature)

5 A sink/source current

Fully protected – System safety UVLO, OVLO, Over-Current, INFilter, Thermal Warning and Shut-Down

+

+

High Voltage Rail up to 1.5 kV Positive drive voltage up to 36 V Negative Gate drive ability (-10 V)

+

STGAP1S Isolation Characteristics

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

life.auament

SiC MOSFET Technology Roadmap

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

Silicon-Carbide MOSFETs

Key Benefits

On-Resistance Versus Temperature

ST is the only supplier to guarantee max Tj as high as 200°C in plastic package

ST SiC MOSFET shows lowest Ron at high temperatures

Wide Bandgap Materials

SiC represents a radical innovation for power electronics

life.auamented

MOSFET RDS(on) Figure of Merit at TJ=150C

SiC MOSFETs are not all the same

ST 650V 2nd Gen SiC MOSFETs

SCTW100N65G2AG – 2nd Generation

SCTW100N65G2AG

- $R_{DS(on)}$ (typ @25°C) : 20 mOhm
- $R_{DS(on)}$ (typ @200°C) : 23 mOhm
- Q_q (typ) : 215 nC
- Package : HiP247TM
	- **ST SiC MOSFET shows lowest Ron increase at high temperatures**
	- **ST is the only supplier to guarantee max Tj as high as 200°C**
	- **Gate driving voltage = 20V**

- Full Maturity: July 2016 (Industrial Grade)
- Full Maturity: H1 2017 (Automotive Grade)

Silicon Carbide MOSFET Packages

Through hole proposal

SMD SMD

HV Silicon Power MOSFET Technologies

application

• **The leading technology for hard- switching topologies Key Features** • Industry's lowest $R_{DS}($ on) in the Market • High switching speed • 550 / 650V classes **Benefits** highest efficiency in the application • Smaller form factor of final system • Especially targeted for hard switching (PFC, **The best fit for resonant / LLC topologies Key Features** • Up to 30% lower Qg (equivalent die size) • Optimized Coss profile • 400 / 500/ 600 / 650V classes **Benefits** • Reduced switching losses through optimized (Qg) (Ciss, Coss) • Enhanced immunity vs ESD & Vgs spikes in the application • Especially targeted for HB LLC, TTF, Flyback..) **State-of-the-arte in the VHV (Very-High-Voltage) Class Key Features** • Extremely good RDS(on) at very high BVDSS • High switching speed • 800 / 850 / 950V classes available now • 1050 / 1.2k / 1.5kV classes in development **Benefits** • High efficiency with lower design complexity • Especially targeted for flyback LED topologies and high voltage range in the MDmesh TM M5-Series MDmesh TM M2-Series SuperMESHTM K5-Series **The best fit for F/B ZVS topologies Key Features** • Integrated fast body diode • Softer commutation behavior • Back-to-Back G-S zener protected • 500 / 600 / 650V classes • Reduced switching losses through optimized (Qg) (Ciss, Coss) • High peak diode dV/dt capabilities • Best use in Full Bridge MDmesh TM DM2-Series

Boost, TTF, Flyback)

Benefits

ZVS

Silicon: MDmesh™ 600-650V SJ Technologies

Short Term Roadmap

LV Silicon Power MOSFET Technologies

