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The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown volt-
age, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor)
namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a good
choice to use in a power amplifier. During this era of wire- less communication with complex modulation
schemes having high peak to average power ratio, maintaining the efficiency and linearity of power
amplifier is a tough task. In this paper an extensive review of GaN HEMT based power amplifier is pre-
sented. First of all, GaN technology is described and compared with other semiconductor technologies.
The different classes of power amplifier like class B, C, D, E, F and J with GaN is discussed. Efficiency
and linearity enhancement techniques like envelope tracking, Doherty power amplifier and digital pre-
distortion used in applications with high PAPR waveforms is described. The advantages of GaN MMIC
(Microwave Monolithic Integrated Circuit) are reviewed. Finally different thermal management solutions
used for GaN power amplifier to cope with its self heating phenomenon are explained.

� 2020 Elsevier GmbH. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. GaN HEMT power amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1. Power amplifier classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Analysis of efficiency improvement in GaN power amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1. GaN Doherty power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2. GaN envelope-tracking amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Analysis of linearity improvement in GaN power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5. Thermal analysis of GaN power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6. GaN MMIC and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Appendix A. Supplementary material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1. Introduction

Wireless communication, military applications, satellite com-
munication and TV broadcasting are some of the areas which
demands high power and high frequency power amplifiers for their
efficient operation. The data rate and number of consumers for
mobile communication is continuously increasing and the con-
sumer market demand lower power consumption and higher
throughput. The fourth generation wireless communication will
shift to up- coming fifth generation. Apart from telecommunication
industry, this change from 4G to 5G will influence a wide range of
areas like robotics, health- care, automobiles, education, agricul-
ture and healthcare. Power amplifiers also plays an important role
in any radio transmissions. With the development of semiconduc-
tor technologies, different power amplifier architectures have
evolved to meet the constantly increasing system level require-
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Table 1
Properties of GaN compared with Si, SiC and GaAs [13–16,20].

Property GaN Si SiC GaAs

Bandgap Eg (eV) 3.4 1.12 3.2 1.4
Breakdown field Ebr [mv/cm] 3.3 0.3 3.5 0.4
Electron mobility mn [cm2/V s] 2000 1500 650 8500
Hole mobility mp [cm2/V s] 300 480 120 400
Saturation electron drift velocity vsat (cm/s) 2.5 � 107 107 2.7 � 107 1.2 � 107

Transit frequency fT (Ghz) 150 20 20 150
Dielectric constant 9.5 11.9 10 12.5
Thermal conductivity K [W/mC] 130 150 450 550

Fig. 1. Three dimentional schematic of AlGaN/GaN HEMT.
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ments like number of antennas, power level, modulation band-
width operating over a wider frequency range [1–3]. The vacuum
tube microwave devices used in high power electromagnetic sys-
tems have been replaced by solid state power amplifiers. This is
due to the fast advancement in solid state device technology. Thus
power amplifier is the governing device in the transmitter output
stage, and it determines the system characteristics like efficiency,
linearity and gain. In some of the applications efficiency is impor-
tant than linearity and gain. For example in a Base Station [4] a
highly efficient power amplifier can help reduce the power dissipa-
tion and thus the need for cooling. Most of the cooling system are
complex to design as well as expensive and can occupy huge space
[5,6]. Output power is an important factor in long range communi-
cations in a noisy environment rather than efficiency. High linear-
ity is necessary to minimize the interchannel interference [7,8] as
the communication channel is becoming narrower. For higher
power and higher frequency applications, semiconductors with
high electron mobility, wide band gap energy and high breakdown
voltage are preferred [9–12].

GaN exists in three different crystalline structures, namely
wurtzite, zinc blende and rock salt. The thermodynamically stable
structure is wurtzite for bulk GaN. The material properties of GaN
with wurtzite crystal structure, [13–16] compared to Si, SiC and
GaAs are given in Table1. GaN power amplifiers provide better effi-
ciency, gain and thermal performance when compared to other
semiconductor technologies. Also it has the potential to operate
at power densities far higher than SiC and GaAs. Due to its high
efficiency GaN is a promising technology in green ICT (green IT
or green computing) systems. The three dimentional schematic
of AlGaN/GaN HEMT is shown in Fig. 1.The two dimensional elec-
tron gas (2DEG) is formed at heterojunction between AlGaN and
GaN. The GaN cap layer can increase the maximum transconduc-
tance and saturation current, it also helps to reduce the series
resistance between source and drain compared with HEMT with-
out GaN cap layer. The sheet charge density of AlGaN/GaN
hetero-structure in the two dimensional electron gas (2DEG) is
very much higher than AlGaAs/GaAs HEMT. This high 2DEG density
is obtained because of the strong piezoelectric and spontaneous
polarization effects [17–19] and the large conduction band offset
between the AlGaN and GaN. The GaAN and AlAN bonds are highly
ionic and they carry a strong dipole. The electronegativity of N is
higher than that of Ga and the electron wave function around
the GaAN pair is offset to the nitrogen side. Due to the very high
electronegativity of N, the degree of spontaneous polarization is
more than five times greater in III-nitrides than in most III-V
semiconductors.

The GaN properties listed in the Table 1 [20], are exploited to
design RF microwave integrated circuits like power amplifiers
[21], switches [22], low noise amplifiers [23] and many other
applications [16]. The bond length between the atoms in GaN is
much smaller when compared with SiASi bond length. For ionic
bonds like GaAN, the lattice energy is the energy required to sep-
arate one mole of a compound into its gaseous phase ions. Ions
with higher charges and shorter distance will have higher lattice
energy, which is a measure of stability of the compound. Smaller
bond length between Ga and N indicates higher lattice energy
and thus higher stability. This explains the more stable and inert
nature of GaN when compared with Si. AlGaN/GaN HEMTs [24–
37] have very high breakdown voltage. Thus large drain voltages
can be used in power amplifiers, which give high output impe-
dance that aids in easier matching and lower loss matching cir-
cuits. The high sheet charge results in large current densities and
minimizing the transistor area results in high watts per millimetre
of gate periphery [38,39]. This paper explores the pros and cons of
GaN power amplifier and gives a brief review of the efficiency and
linearity enhancement technique used. The thermal management
techniques used in GaN is explained and also the GaN MMIC devel-
opment is reviewed.
2. GaN HEMT power amplifier

The distinct advantages of GaN such as high output power den-
sity and high operational voltage make GaN a game changer in
radar and satellite communication. The output power can be
increased about four times when compared with GaAs, with the
same transistor size [40–42]. The advantages of higher power den-
sity are less circuit complexity, higher efficiency and wider band-
width. Increased power density indicates more power per unit
area and thus more functionality can be implemented in the same
area, hence lesser circuit complexity and smaller die size. Also GaN
is now qualified for space applications. Airborne and space applica-
tions which have limited prime energy requires the development
of highly efficient power amplifier. The very high power density
of GaN enables it to use in high operating voltages and thus
improved DC to RF efficiency and wider bandwidth were achieved.
The first demonstration of GaN broad band power amplifier was
done in 1999 [43]. The circuit was fabricated on an AlN substrate
using AlGaN- GaN power high-electron mobility transistors, grown
on sapphire substrates, which were flip-chip bonded for thermal
management. Most of the semiconductor companies have now
access to GaN MMIC (monolithic microwave integrated circuits)
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technology [44–46] having high performance processes with gate
lengths less than 150 nm. GaN based MMIC have many advantages.
For example, in space and airborne systems the high operation bias
close to the onboard power supply helps to reduce the extra energy
for DC to DC conversion [47–50].

Maximum efficiency of a power amplifier is achieved when it
operates at its peak output power, while lowering the output
power significantly reduces efficiency. For linearity, the opposite
is true; the maximum linear operation is obtained at low output
power. To rectify the impairments that come along with high effi-
ciency operation, digital predistortion (DPD) techniques are used.
Digital predistortion techniques can compensate for power ampli-
fier nonlinearities [51,52]. The radio base stations have power
amplifiers that are optimized for high efficiency and high power-
added efficiencies as high as 50–70 percent. A DPD technique is
then used to recover the linearity. A highly efficient base station
system thus leads to a significant reduction in power consumption
and cooling requirements. Similarly in space and aircraft environ-
ments which have limited primary energy for cooling, a small per-
centage change in power added efficiency can make a huge
positive impact. GaN technology has made a bigger impact on
the power amplifier concept when compared with Si technology.
Transit frequency fT, which is a measure of intrinsic speed of a
transistor is high for GaN than Si, and also GaN have higher break-
down voltage than Si, which makes it more suitable to use in high
power and high frequency applications. The Doherty configuration
of GaN power amplifier exhibits higher off state impedance and
lower output capacitance when compared with Si technology.

In GaAs technology, the bandwidth of a high power amplifier is
limited due to the large input capacitances of large periphery
devices providing high power [53]. Also, the impedance transfor-
mation from low optimum load impedance up to the 50 O environ-
ment limits the bandwidth. To get wide bandwidth and high power
simultaneously, a device with low device capacitance and high
optimum load impedance is needed [54–56]. As GaN devices exhi-
bit high output-power density and good thermal properties, the
fabrication of smaller devices with the same output power when
compared to the much larger GaAs counterparts is possible. As
the smaller size of GaN devices leads to a reduction in terminal
feedback capacitance and an increase in the output impedance
for a given output power, they can operate effectively over a wider
bandwidth.
2.1. Power amplifier classes

Different classes of operation of power amplifier are class A, B,
AB, C, D, E, F and J [57]. The theoretical maximum efficiencies of
the power amplifier are given in Table 2. Theoretical efficiency cal-
culation is based on the ideal physical model equations. There are
number of losses in a practical power amplifier, like discharge
losses, conduction losses, Vknee losses and passive component
losses [58]. Due to these circuit losses, the amplifier fails to achieve
the maximum theoretical efficiency. For example in a Class D
switching amplifier, the theoretical efficiency would be achieved
if the transistors could switch instantaneously. That is, the transis-
tors are in either their fully on or fully off state, where almost no
power is consumed. But practically, it takes a little time for the
voltage to swing, and during this time some power is dissipated.
Thus practical efficiency is always lesser than theoretical
Table 2
Theoretical maximum efficiencies of various power amplifier [59–63].

Class A B C

Efficiency% 50 78.5 100
efficiency. Power amplifiers can be categorized as. the linear Class
A, the non-linear Class AB, B, C then the switching type amplifiers,
Class E, F, etc. The Class A amplifier has the highest linearity among
all the classes, at the expense of efficiency. And for switching
amplifiers, linearity is traded for efficiency, which is suitable for
the applications that does not require high linearity.

Class A power amplifier has the maximum linearity with only
50% theoretical efficiency. They can be used for applications like
audio sound systems which require linear and distortion less oper-
ation and does not give much importance to efficiency. Class B
power amplifiers are used in low cost systems and it is more effi-
cient than class A. In [64] highly linear common source and com-
mon drain class B power amplifier in GaN was reported. The
common source amplifier exhibited a PAE of 34% and linearity
greater than 35 dBc of third order intermodulation suppression.
The combination of class A and B gives class AB. The efficiency of
class C amplifier is high and they are highly nonlinear, thus they
are not used in audio amplifiers. The high performance two stage
pulsed class C power amplifier in GaN HEMT was reported in
[65] used for radar applications. The measured RF peak power
was 39dBm, in an operating frequency range of 2.45–2.75 Ghz.
Class D amplifiers are nonlinear switching amplifiers also called
as digital amplifiers with theoretical efficiency of 100%. A Doherty
transmitter architecture was implemented using class D GaN
power amplifier in [66]. Class E power amplifiers used in RF appli-
cations are highly efficient tuned power amplifiers. In [67] a broad-
band class E GaN power amplifier was designed and an average
drain efficiency of 68% was observed. Class F amplifiers uses
selected harmonics to shape their drain voltage and drain current
waveform to improve their efficiency and power output capability.
A class F GaN power amplifier was fabricated in [68] which exhib-
ited a power added efficiency (PAE) of 85% with an output power of
16.5 W. Class J amplifier is similar to Class AB power amplifier with
a capacitive harmonics termination such that the collector voltage
and current waveform have minimum intersect. In [69] the design
and implementation of highly efficient class J GaN power amplifier
was done for base station application.
3. Analysis of efficiency improvement in GaN power amplifiers

Wide modulation bandwidth and high PAPR (peak to average
power ratio) is the characteristics of modern wireless communica-
tion system. Different methods to reduce the PAPR have already
been adopted [70]. Power amplifiers are compelled to operate at
a large back off because of this high PAPR signals. This degrades
the power amplifier efficiency. Particularly in 4G/5G systems, mod-
ulated signals with more complex scheme and higher bandwidth
are used to achieve higher data rate, and the demand is increasing
for flexible multiband, multimode operation [71–74]. Various
approaches such as Doherty amplifiers [75–78], envelope tracking
(ET) amplifiers [79–81], and digital transmitters with superior GaN
properties are now used, to efficiently and flexibly amplify the
signals.

3.1. GaN Doherty power amplifier

Modern base stations depends on Doherty architecture to
implement linear, efficient and broadband power amplifiers (PAs)
[82–106]. Doherty power amplifier (DPA), combines two power
D E F J

100 100 100 78.5



Table 3
Performance of GaAs power amplifiers.

Ref Freq (GHz) Saturated output power (dBm) P1dB (dBm) Power added efficiency forlinear operation (%) Supply voltage (v)

[123] 7 35 34 5 6
[124] 23 33 31 3 6
[125] 38 28 27 <2 4
[126] 31–41 37 – 26 4
[127] 42–46 34.5 – 23–26 5
[128] 13.6–14.2 38.1 – 24.6 8

Table 4
Performance of GaN power amplifiers.

Ref Freq (Ghz) Saturated Pout (dBm Drain) efficiency at PAV tt ( PAE (%) PAPR (dBm) Modulation ACLR (dBc) Gate length (mm)

[109] 1.65–2.75 44.5–46.3 46.0–62.0 – 7.5 LTE �45.0 0.4
[130] 1.5–2.4 43.1–44.4 45.3–53.6 – 6.7 LTE �45.6 0.4
[131] 1.7–2.6 44.9–46.3 >45.0 – 6.5 WCDMA �50 0.4
[132] 1.7–2.8 44.0–44.5 50.0–55.0 – 6.5 LTE �47.8 0.25
[133] 0.75–0.95 48.0–48.8 >44.0 – 9.5 LTE <�22.2 0.4
[134] 0.9–1.8 49.7–51.4 41.3–57.4 – 9.5 LTE <�22.5 0.4
[135] 5.5 – 29.5 25.6 6 LTE �48 0.25
[136] 0.7–0.95 44.7 78.3 – 9.65 LTE �45.6 0.4
[137] 8–12 40 – 44.7 – LTE – 0.25
[138] 75–110 28.6 – 6.5 – LTE – 0.1
[139] 1.68–2.12 48 77–84 70–79 – LTE – 0.25
[140] 2.14 – 44 40 8.6 LTE �47.9 0.4
[141] 1.85 – – 31 – LTE <�30 0.4
[142] 2.35 – 46.1 40.1 11 LTE �38.8 0.4
[143] 0.65–1.95 >39 25–42 – 7.2 WCDMA �50 0.4
[144] 2.14 50 33.7 – 6.5 LTE �38 ? 0.4
[145] 2.4 44 86.7 – 6.6 LTE �30.2 –
[146] 6–18 3.7–5.6 – 13–21 – LTE – 0.25
[112] 2.6 37.6 54.4 – 6.5 LTE �27 0.4
[147] 1.5–3.8 43.4 63 – – LTE – 0.4
[148] 2.4 45.6 67 47 7.5 LTE �27 0.4
[149] 1.63–1.98 31–34 – 944–60 – WCDMA – 0.4
[150] 2–19 5.5–12.3 – 22–49 9.5 LTE – 0.1
[67] 9.57 – – 32 11.4 LTE –33 0.15

Fig. 2. Power added efficiency versus output power.
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amplifiers to optimize the power efficiency at the average and peak
powers. For single-band LTE signals, DPAs can exhibit an average
efficiency around 50%. To maximize the power efficiency of the
main and peaking PAs used in DPA, waveform engineering is used
[107,108]. The voltage and current swings on the drains of GaN
HEMT devices far exceed than other RF power semiconductor tech-
nologies. This enables the use of waveform engineering techniques
which employs a suitable harmonic manipulation on both source
and load harmonics. Tables 3 and 4 provide the performances of
GaAs power amplifier and GaN Doherty power amplifier as avail-
able in the references. The first three rows of Table 3 data has been
taken from vendor datasheets [123–125] and these are the best
examples for the current state of point to point communication,
that is linear operation at the expense of efficiency. The bandwidth
of GaAs technology is from 10 Khz up to 150 Ghz. In [126], 0.1 mm
GaAs PHEMT was used to design a power amplifier which delivers
5 W saturated output power and 28% maximum power added effi-
ciency. The authors of [126] claim this amplifier to be of maximum
bandwidth in the Ka band.

Doherty power amplifiers has been an inevitable part of wire-
less base station for a long time as they achieves high efficiency
in both saturation and in back-off [109–113]. The basic Doherty
amplifier improves efficiency in back-off by using two branch
amplifiers, a peaking amplifier and a carrier amplifier. The carrier
amplifier is connected to the peaking amplifier through an impe-
dance inverter and the peaking amplifier is then connected to the
load. At low power, this arrangement presents high impedance to
the carrier amplifier. The impedance decreases as the power
increases. Over a wide range of output powers, typically 6 dB or
more, the load modulation makes sure that the carrier amplifier
operates at saturation and also at high efficiency. Theoretically
Doherty amplifier is a linear amplifier, but the practical realization
is inevitably nonlinear. Therefore, a digital pre distortion system is
needed in the radio base station, which provides linear operation.
As the Doherty amplifiers are successfully implemented in radio
base stations, next attempt was made to carry over the Doherty
technology to the point-to-point communication. The challenges



Fig. 3. Gain versus output power.
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at circuit level are the shorter wavelengths in the point-to-point
communication bands and the low power density of GaAs. Shorter
wavelengths need an integrated solution in contrast to the sub-
6 GHz Doherty amplifiers, where the combiner and splitting net-
works are implemented on the amplifier printed circuit board.
But the maximum output power that can be achieved is restricted
due to low power density of GaAs. Doherty power amplifiers
beyond 6 GHz can be realized with short gate length GaN MMIC
technology, which can deliver more than 10 W in saturation. The
difficulty in using GaAs material is the low power density which
reduces the peak power handling of the system.

Works that was done with GaN Doherty power amplifiers
which operates in the 7 GHz bands [114–120] and at 23 GHz
[121] shows that state-of-the-art GaN technology is capable of
achieving a power-added efficiency of 30 percent and more than
20W of saturated output power. In 2012, Gustafsson [116] demon-
strated the performance of a GaN MMIC Doherty power amplifier
operating in a microwave radio band. Using a digital predistortion
system, the amplifier achieved an average efficiency of greater than
35 percent while keeping its adjacent channel leakage power ratio
(ACLR) below 48 dB for a 10 MHz 256-QAM signal. More recently,
Gustafsson [122] demonstrated the performance of a GaN hybrid
Doherty amplifier. The hybrid approach with passive GaAs for
matching circuits limits the GaN content, which has the potential
to lower the cost of the Doherty amplifier. In [129], PAE and gain
of symmetrical GaN Doherty power amplifier is compared with
balanced class AB power amplifier. The Doherty configuration
gives an improved PAE when compared to class AB configuration
for a continuous wave input.

The performance outcome of recent research on GaN is given in
Table 4. Different modulation schemes like LTE (long-term evolu-
tion) and WCDMA (wide band code division multiple access) were
used with the given PAPR. The data in Table 4 indicates that the
PAE of the GaN power amplifier tend to decrease above 20Ghz.
In Fig. 2 the PAE of GaN power amplifiers in [140], [141], [142]
and [149] are analysed against the output power and compared.
The details of GaN HEMT power amplifiers compared in Fig. 2 are
given in Table 5. From the analysis it is evident that the PAE and
output power has a linear relationship until the PAE saturates at
the maximum output power. Also the highest PAE is achieved in
[149] in the frequency range of 1.63–1.98 Ghz. The plot between
gain of the GaN power amplifiers and their output power as in
[138], [140], [142] and [148] is shown in Fig. 3. Table 6 gives the
details of the GaN HEMT power amplifiers compared in Fig. 3. As
shown in the figure, the gain decreases rapidly after output power
reaches the saturated output power. It is due to this phenomenon
the power amplifier is compelled to operate at backoff to maintain
high efficiency. Also its clear from the plot that GaN power ampli-
fiers operating at high frequency tend to have low saturated output
power than those operating at lesser frequencies. The analysis of
gate length of GaN HEMT and maximum gain achieved by the
power amplifiers as available in [67,112,146,150] is shown in
Fig. 4. A peak is obtained at 0.15 mm, which indicates that maxi-
mum gain can be achieved at 0.15 mm gate length technology when
compared to other gate lengths. This observation was made at a
bandwidth of 2–20 Ghz. The maximum drain efficiency of GaN
HEMT power amplifier reported was 82% as in [151].
Table 5
Details of the GaN HEMT power amplifiers compared in Fig. 2.

Ref Remarks Frequency (GHz)

[140] Doherty power amplifier 2.14
[141] Doherty power amplifier 1.85
[142] Envelope tracking power amplifier 2.35
[149] Doherty power amplifier 1.63–1.98
3.2. GaN envelope-tracking amplifiers

Similar to Doherty architecture, envelope tracking is also an
important option to increase the power amplifier efficiency. In fact
they are considered as an effective way for greener wireless com-
munication [152] as they ensure efficiency even the power ampli-
fier operates at backoff. An envelope tracking amplifier is made up
of a RF power amplifier and an envelope amplifier/modulator (EA)
to track the signal envelope. In envelope tracking amplifiers, the
supply voltage of the RF power amplifier is modulated dynamically
by the envelope amplifier, so that the RF power amplifier operates
at compression, resulting in high average efficiency even with high
peak to average power ratio signals. The block diagram of an envel-
ope tracking power amplifier [153] is shown in Fig. 5 and the
power supply modulation is shown as Vdd (t).

To realize an efficient broadband envelope amplifier, GaN with
its higher- speed operation and higher voltage is an attractive
option, and thus an envelope tracking amplifier with GaN has been
realized in [157]. The power-added efficiency (PAE) and output
power of the envelope tracking power amplifier were 35.3% and
30.7 dBm, respectively. Table 7 shows the state-of-the-art perfor-
mance of envelope tracking power amplifiers. Compared with
CMOS, the envelope tracking power amplifier reported in [157]
has the highest efficiency and widest modulation bandwidth. This
shows that the envelope tracking power amplifier is one of the
most useful architectures for 4G/5G systems which require multi-
mode, multiband operation [73,158,159].
4. Analysis of linearity improvement in GaN power amplifier

Power amplifiers play an inevitable role in determining the
overall performance and throughput of the wireless communica-
tion system. But they are inherently nonlinear and this nonlinear-
ity causes distortion and spectral regrowth which lead to adjacent
Average PAE (%) Modulation Gate length (mm)

40 LTE 0.4
31 LTE 0.4
40.1 LTE 0.4
44–60 LTE 0.4



Table 6
Details of the GaN HEMT power amplifiers compared in Fig. 3.

Ref Remarks Frequency (GHz) Average PAE (%) Modulation Gate length (mm)

[138] WBand GaN power amplifier MMIC 75–110 6.5 LTE 0.1
[140] Doherty power amplifier 2.14 40 LTE 0.4
[142] Envelope tracking power amplifier 2.35 40.1 LTE 0.4
[112] Load modulated balanced amplifier 2.4 47 LTE 0.4

Fig. 4. Maximum gain versus gate length.
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channel interference. If the power amplifier operates at the linear
portion of its operating curve (that is at backoff), the power ampli-
fier operates at lower power and thus at lower efficiency. Moreover
new modulation schemes like wideband code division multiple
access (WCDMA) and orthogonal frequency division multiplexing
(OFDM, WLAN/3GPP LTE) are complex and they have high PAPR
(Peak to average power ratio), that is very large fluctuation in their
signal envelope. This demands the power amplifiers to operate at
back off far below its saturated power level resulting in very low
efficiency. A lot of linearization methods have been introduced
such as adaptive baseband predistortion, Cartesian feedback,
envelope elimination and restoration, feedforward and linear
amplification with nonlinear components [73,159–163]. All these
methods have resulted in improving the linearity, but many of
them suffers from bandwidth limitations and lack of precision
and stability. This is where adaptive digital predistortion comes
into picture. Digital predistortion is one of the linearization tech-
niques used by power amplifiers to obtain good quality transmis-
sion with high PAPR and wideband signals [161–164]. The other
Fig. 5. Block diagram of envelope t
linearization techniques and their comparison with digital predis-
tortion [165–167] are given in Table 8. The measure of linearity is
given by intermodulation distortion (IMD), 1db compression point
(P1dB), spectral regrowth and noise power ratio (NPR). The lesser
the value of IMD, the higher the linearity. Predistortion is achieved
by reducing phase and gain distortions or by cancelling the inter-
modulation products. In [168], a digital predistortion linearizer
was used in a highly efficient GaN power amplifier. WCDMA (wide
band code division multiple access) signal was used as the input
with PAPR of 9.8 dB. A power added efficiency of 21% was achieved
at 10 dB output power back off with 53dBc ACLR.

5. Thermal analysis of GaN power amplifier

Self heating is one of the main problems faced by GaN technol-
ogy. GaN can reach 5–10 times of higher power densities compared
with GaAs and thus results in higher operating channel tempera-
ture. Growing GaN on SiC substrate is adopted as one of the
method of thermal management. This is due to high thermal con-
ductivity of SiC. SiC keeps the channel temperatures of GaN HEMT
beneath the maximum temperature for safe operation. As the
channel temperature is exponentially related to the device reliabil-
ity, a change of 15–20 degree celsius can decrease the mean time
to failure by an order of magnitude. Also different cooling strate-
gies of GaN HEMT are introduced like passive remote cooling,
active remote cooling, passive near junction cooling and active
integrated cooling [169,170]. DARPA (Defense Advance Research
Projects Agency) have launched the TMT (Thermal Management
Technologies) program [171] to address the thermal management
issues in semiconductors. This program introduced attached cool-
ing and embedded cooling technologies to address the heat man-
agement in active regions of semiconductors. [172,173]. The
reliability of GaN devices is mainly effected by the junction tem-
perature. The highest magnitude of junction temperature occurs
on the drain side edge of the gate called the hotspot. Therefore
moving the thermal management solutions closer to the heat gen-
eration region is critical in order to reduce the overall junction
temperature of the device. The use of embedded microfluidic ther-
mal management is more effective than passive remote cooling
strategies. The traditional passive remote cooling techniques are
now replaced by near junction embedded microfluidic cooling
racking power amplifier [153].



Table 7
Performance comparison of GaN and CMOS Envelope tracking amplifier.

Ref Device for EA Freq (Ghz) Modulation band width (Mhz) PAPR (dB) Total efficiency (%) ACLR (dBc)

[154] CMOS 0.5–1.75 5 6.6 25–31 �47.5
[155] CMOS 1.85 5 6.5 30 –32
[156] GaN 1.84 10 11.7 23.9 �38.7
[157] GaN 0.9–2.15 80 6.5 32.1 �45

–
35.5

Table 8
Linearity enhancement methods [165–167].

Feedback Feed forward Analog predistortion Digital predistortion

Bandwidth Narrow Wide Very wide Moderate
Linearity Good Very good Good Very good
Complexity Medium High Medium High
Power efficiency High low High High
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methods [174–179]. GaN on diamond substrate is also used to
achieve a good thermal management where diamond act as the
electrical substrate and heat spreader. Diamond microfluidics
based intrachip cooling is used in [180] to affect scalable, low ther-
mal resistance die level heat removal. In [181], application of
microfluidic technology on GaN on Diamond devices is explored.
The tradeoff between passive and active remote cooling techniques
used in GaN on SiC and GaN on Diamond device technologies are
presented in [182].

6. GaN MMIC and applications

Microwave Monolithic Integrated Circuit (MMIC) power ampli-
fier where the transistor and the matching network are integrated
in a single platform is of crucial importance to minimize weight
and component count, and also to improve reliability and repeata-
bility of the microwave front-ends. Applications like solid state
power transmitters, radar, electronic warfare, high speed commu-
nications and compact receivers would benefit from the imple-
mentation of MMIC, and GaN HEMT technology has been
identified as a suitable technology for this. The first GaN MMIC
was reported in 2000 [183,184]. Sapphire substrates were initially
used, later Si or SiC substrates were used for the fabrication of GaN
high electron mobility transistors. Both Si and SiC technologies
have their relative strengths and weaknesses [185,186]. Si-based
technology has several limitations as compared to the SiC-based
technology especially for MMIC realizations due to the higher
losses of the passive components and the lower working frequency
of the active devices [187,188]. Si based technology offers low cost
and high wafer diameter when compared with SiC. Many GaN
MMICs are produced in bulk by the vendors and they have per-
formed remarkably well.

GaN on SiC MMIC processes have been developed and can prac-
tically make use of the same passive structures used for GaAs
MMICs that have attained a good technological maturity. The high
output power density of GaN allows the fabrication of much smal-
ler size devices compared to GaAs with the same output power.
Smaller size leads to higher impedance which facilitates lower loss
matching in power amplifiers. The high operating voltage of GaN
due to its high breakdown electric field reduces the need for volt-
age conversion and also provides the potential to obtain high effi-
ciency, which is a crucial for power amplifiers. The wide bandgap
also enables it to operate at high temperatures. The GaN-on-SiC
based MMICs enable the state-of-the-art high frequency perfor-
mance and bandwidth to be extended into Ka-Band and Ku-Band
applications [189]. The design and measured performance of two
MMIC power amplifiers (based on GaAs PHEMT and GaN HEMT)
is given in [40]. The operating frequency is over 4 to 18 GHz with
approximately 4 Watts of output power. For the same output
power, the ratio of output periphery of the devices is about 1:7
(GaN:GaAs).

Diamond has the highest thermal conductivity of any known
material at temperatures above 100 K. Due to its high thermal con-
ductivity, diamond is also considered as a substrate to grow GaN
devices [190–192]. It can effectively remove heat from active
region of GaN device and thus enables the improvement in lifetime
and reliability of the amplifiers and also increase the power. A
comparative analysis of GaN on SiC and GaN on Diamond technolo-
gies is given in [193].

As GaNmaterial properties are more suitable for high frequency
and high power operation, they cause an unwanted issue like elec-
tromagnetic emission that can affect the performance of nearby
integrated circuits [194–196]. So handling these emissions in such
a way that they cause less damage is done in many ways. Some of
them are shielding the source [197,198], suppressing the electro-
magnetic emissions using absorbent materials [199,200] and filter-
ing out the emissions by adding filtering components [201,202].
But all these methods turned out to be costly and failed to address
the root cause of the emissions. In [203], a simulation method is
developed using Advanced Design System. The simulated electro-
magnetic emission results were used to optimize it using response
surface methodology.

7. Conclusion

Solid state amplifiers with high output power and operating at
high frequency plays an inevitable role in the modern wireless
communication. Complex modulation schemes with high PAPR sig-
nals demand power amplifiers with high efficiency and linearity at
both saturation and backoff. The material properties of GaN makes
it a good choice for the fabrication of high power and high fre-
quency power amplifiers. Different efficiency enhancement tech-
nique like Doherty configuration and envelope tracking can be
used to ensure high efficiency. Analysis of efficiency was done in
GaN power amplifier and the PAE was found to be far higher in
GaN Doherty power amplifier than in conventional GaN power
amplifier. Thus GaN Doherty power amplifiers are best suited for
Base station application as the highly efficient power amplifier
helps to reduce the power dissipation and thus the need for cool-
ing. Linearization technique like digital predistortion is used in
GaN power amplifiers to obtain linearity at high efficiency. Grow-
ing GaN on SiC and on Diamond was found to be effective for ther-
mal management of the power amplifier. SiC is used more
extensively than diamond due to cost issues. The microwave
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monolithic integrated circuit technology in GaN has its own advan-
tages. GaN have an immense potential which helps in the develop-
ment of high frequency and high power devices due to its high
thermal conductivity. Also due to its wideband gap advantages
over other semiconductor technologies, GaN technology and appli-
cations are the most exciting in RF and microwave industry.
Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.aeue.2019.153040.
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