Metal -Oxide-Semiconductor Transistor [n-channel]

Negligible electron concentration underneath Gate region; Source-Drain is electrically open **High electron concentration underneath Gate region; Source-Drain is electrically connected**

MOSFET I-V Analysis

•**In general, inversion charge Qn ([VG-V^T]) decreases from Source toward** Drain because channel potential V_c increases.

$$
\frac{\underline{\qquad \qquad }}{1} \quad \mathbf{V}_{\mathbf{B}=\mathbf{0}}
$$

Approximate Analysis

Note: I_D is constant for all positions along channel

Let V_T **defined** to be threshold voltage at Source

$$
V_{T}(\text{average}) \sim V_{T} + \frac{V_{DS}}{2} \quad \text{[This is an approximation]}
$$
\n
$$
Q_{n}(\text{average}) = C_{OX}(V_{G} - V_{T}(\text{average}))
$$
\n
$$
= C_{OX}\left(V_{G} - V_{T} - \frac{V_{DS}}{2}\right)
$$

V_{Dsat} is *defined* to be the value of V_{D} **with Qn=0** *at drain.*

From $Q_n = C_{ox} (V_G - V_T - V_D)$, we get $V_{Dsat} = V_G - V_T$

Saturation Current

· saturation region:

$$
V_D \geq V_{Dsat} = V_{GS} - V_T
$$

$$
I_{Dsat} = \frac{W}{2L} C_{oxe} \mu_{eff} (V_{GS} - V_T)^2
$$

Pinch-Off & Channel-Length Modulation

MOSFET I-V Characteristics Summary

For
$$
V_D < V_{Dsat}
$$

\n
$$
I_D = \frac{\mu_n W}{L} C_{OX} \left(V_G - V_T - \frac{V_{DS}}{2} \right) V_{DS}
$$
\nFor $V_D > V_{Dsat}$
\n
$$
I_D = I_{Dsat} = \frac{\mu_n W}{2L} C_{OX} (V_G - V_T)^2
$$
\nNote: $V_{Dsat} = V_G - V_T$

Mobility of inversion charge carriers

* (effective) is extracted from MOSFET I-V characteristics $*$ Typically ~0.5 of μ (bulk)

I^D vs. VDS **Characteristics**

The MOSFET *I^D* **-***VDS* **curve consists of two regions:**

1) Resistive or "Triode" Region: $0 < V_{DS} < V_{GS} - V_{T}$

Professor N Cheung, U.C. Berkeley

Channel-Length Modulation

If L is small, the effect of ΔL to reduce the inversion**layer "resistor" length is significant**

N-Channel MOSFET Summary

 V_{DS} and V_{GS} normally positive values

- V_{GS} V_t: cut off mode, $I_{DS}=0$ for any V_{DS}
- V_{GS} V_t: transistor is turned on

1)
$$
V_{DS} < V_{GS} - V_t
$$
: Triode Region

$$
\mathbf{i}_{\text{D}} = \frac{\mathbf{W}}{\mathbf{L}} \cdot \frac{\mathbf{KP}}{2} \left[2(\mathbf{v}_{\text{GS}} - \mathbf{V}_{t}) \mathbf{v}_{\text{DS}} - \mathbf{v}_{\text{DS}}^{2} \right]
$$

2) V_{DS} > V_{GS} - V_t: Saturation Region

$$
\mathbf{i}_{\text{D}} = \frac{\mathbf{W}}{\mathbf{L}} \cdot \frac{\mathbf{KP}}{2} \left[2(\mathbf{v}_{\text{GS}} - \mathbf{V}_{t})^{2} \right]
$$

Boundary between Triode and Satu

$$
v_{\text{GS}} - V_{t} = v_{DS}
$$

$$
\mathbf{i}_{\mathrm{D}} = \frac{\mathrm{W}}{\mathrm{L}} \bullet \frac{\mathrm{KP}}{2} \left[2(v_{\mathrm{GS}} - V_{t})^2 \right]
$$

Boundary between Triode and Saturation Regions

$$
v_{GS} - V_t = v_{DS}
$$

Professor N Cheung, U.C. Berkeley

P-Channel MOSFET Summary

 v_{DS} and v_{GS} normally negative values

- v_{GS} > V_t: cut off mode, I_{DS} =0 for any V_{DS}
- v_{GS} < V_t :transistor is turned on
- 1) $V_{DS} > V_{GS}$ -V_t: Triode Region

$$
\mathbf{i}_{\text{D}} = \frac{\text{W}}{\text{L}} \cdot \frac{\text{KP}}{2} \left[2(\text{v}_{\text{GS}} - \text{V}_{\text{t}}) \text{v}_{\text{DS}} - \text{v}_{\text{DS}}^2 \right]
$$

2) $\text{v}_{\text{DS}} < \text{v}_{\text{GS}} - \text{V}_{\text{t}}$: Saturation Region

$$
\mathbf{i}_{\text{D}} = \frac{\text{W}}{\text{L}} \cdot \frac{\text{KP}}{2} \left[2(\text{v}_{\text{GS}} - \text{V}_{\text{t}})^2 \right]
$$

Bounding
 $v_{\text{GS}} - V_t = v_{\text{DS}}$

$$
v_{GS} - V_t = v_{DS}
$$

Professor N Cheung, U.C. Berkeley

P-Channel MOSFET I_D *vs.* V_{DS}

• As compared to an n-channel MOSFET, the signs of all the voltages and the currents are reversed:
 $n^{\times 10^{4}}$

MOSFET *V^T* Measurement

• V_T can be determined by plotting I_D *vs.* V_{GS} , using a low value of V_{DS} :

Why x_{dmax} ~ constant beyond onset of strong inversion ?

n -surface = n -bulk \Box e ^{qVSi/kT}

Professor N Cheung, U.C. Berkeley

Parameter Extraction from MOSFET I-V

Alternative way to extract V_T

•Measure I_D versus V_G for a **fixed** *small* V_{DS} (say <100mV)

The intercept of I_D versus V_G plot on V_G -axis is V_T .

EE143 F2010 \blacksquare Lecture 23

W

$$
I_D = \mu_n \frac{W}{L} C_{OX} \left(V_G - V_T - \frac{V_D}{2} \right) V_D
$$

$$
\frac{\partial I_D}{\partial V_D} = \mu_n C_{OX} \frac{W}{L} (V_G - V_T) \text{ for small } V_D
$$

(E) Channel Modulation Parameter λ

Short Channel Effect on V_T

Area of gate charge distribution

"Yau Model" for short-channel effect.

To make
$$
f \rightarrow 1
$$

 W_{o}

- •Implantation at low energy •Small Dt.
- •Minimize channeling and transient enhance diffusion

$$
\bullet Increase \ N_a
$$

Effect of V_{DS} **on** V_T **Lowering**

Large $V_{DS} \Rightarrow$ Larger S/D depletion charge at the drain side \Rightarrow Smaller depletion region charge contributed by gate \Rightarrow V_T starts to decrease at larger L

Narrow Width Effect (related to W)

Small Geometry Effects Summary

SUMMARY of MOS Module

- Accumulation, Depletion, and Inversion Modes
- Flat Band Voltage, Threshold Voltage
- Charge Distributions and E-field Distributions
- Voltage drop across Silicon and across oxide
- Channel Bias and Substrate Bias
- **Oxide Charge Effects**
- Threshold Voltage Tailoring by Implantation
- NMOS and PMOS
- Small Signal Capacitance versus V_G
- MOSFET I-V Characteristics
- V_{Dsat} and I_{Dsat}
- MOSFET Parameters Extraction
- Short Channel and Narrow Channel Effects (qualitative)